- -

Development of Sustainable and Cost-Competitive Injection-Molded Pieces of Partially Bio-Based Polyethylene Terephthalate through the Valorization of Cotton Textile Waste

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development of Sustainable and Cost-Competitive Injection-Molded Pieces of Partially Bio-Based Polyethylene Terephthalate through the Valorization of Cotton Textile Waste

Mostrar el registro completo del ítem

Montava-Jordà, S.; Torres-Giner, S.; Ferrándiz Bou, S.; Quiles-Carrillo, L.; Montanes, N. (2019). Development of Sustainable and Cost-Competitive Injection-Molded Pieces of Partially Bio-Based Polyethylene Terephthalate through the Valorization of Cotton Textile Waste. International Journal of Molecular Sciences. 20(6):1-19. https://doi.org/10.3390/ijms20061378

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/145546

Ficheros en el ítem

Metadatos del ítem

Título: Development of Sustainable and Cost-Competitive Injection-Molded Pieces of Partially Bio-Based Polyethylene Terephthalate through the Valorization of Cotton Textile Waste
Autor: Montava-Jordà, Sergi Torres-Giner, S. Ferrándiz Bou, Santiago Quiles-Carrillo, Luis Montanes, Nestor
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Fecha difusión:
Resumen:
[EN] This study presents the valorization of cotton waste from the textile industry for the development of sustainable and cost-competitive biopolymer composites. The as-received linter of recycled cotton was first chopped ...[+]
Palabras clave: Bio-PET , Cotton fibers , Food packaging , Biorefinery system design , Waste valorization
Derechos de uso: Reconocimiento (by)
Fuente:
International Journal of Molecular Sciences. (eissn: 1422-0067 )
DOI: 10.3390/ijms20061378
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/ijms20061378
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/
info:eu-repo/grantAgreement/MINECO//AGL2015-63855-C2-1-R/ES/DESARROLLO DE UN CONCEPTO DE ENVASE MULTICAPA ALIMENTARIO DE ALTA BARRERA Y CON CARACTER ACTIVO Y BIOACTIVO DERIVADO DE SUBPRODUCTOS ALIMENTARIOS/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/
info:eu-repo/grantAgreement/GVA//ACIF%2F2016%2F182/
info:eu-repo/grantAgreement/MECD//FPU15%2F03812/ES/FPU15%2F03812/
Agradecimientos:
This research was supported by the Ministry of Science, Innovation, and Universities (MICIU) through the AGL2015-63855-C2-1-R and MAT2017-84909-C2-2-R program numbers. L.Q.-C. wants to thank the Generalitat Valenciana (GVA) ...[+]
Tipo: Artículo

References

Tharanathan, R. . (2003). Biodegradable films and composite coatings: past, present and future. Trends in Food Science & Technology, 14(3), 71-78. doi:10.1016/s0924-2244(02)00280-7

Plastics in a circular economyhttp://www.europarl.europa.eu/RegData/etudes/ATAG/2018/625163/EPRS_ATA(2018)625163_EN.pdf

Babu, R. P., O’Connor, K., & Seeram, R. (2013). Current progress on bio-based polymers and their future trends. Progress in Biomaterials, 2(1), 8. doi:10.1186/2194-0517-2-8 [+]
Tharanathan, R. . (2003). Biodegradable films and composite coatings: past, present and future. Trends in Food Science & Technology, 14(3), 71-78. doi:10.1016/s0924-2244(02)00280-7

Plastics in a circular economyhttp://www.europarl.europa.eu/RegData/etudes/ATAG/2018/625163/EPRS_ATA(2018)625163_EN.pdf

Babu, R. P., O’Connor, K., & Seeram, R. (2013). Current progress on bio-based polymers and their future trends. Progress in Biomaterials, 2(1), 8. doi:10.1186/2194-0517-2-8

Torres-Giner, S., Torres, A., Ferrándiz, M., Fombuena, V., & Balart, R. (2017). Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene. Journal of Food Safety, 37(4), e12348. doi:10.1111/jfs.12348

Essabir, H., Bensalah, M. O., Rodrigue, D., Bouhfid, R., & Qaiss, A. (2016). Structural, mechanical and thermal properties of bio-based hybrid composites from waste coir residues: Fibers and shell particles. Mechanics of Materials, 93, 134-144. doi:10.1016/j.mechmat.2015.10.018

Holbery, J., & Houston, D. (2006). Natural-fiber-reinforced polymer composites in automotive applications. JOM, 58(11), 80-86. doi:10.1007/s11837-006-0234-2

Quiles-Carrillo, L., Montanes, N., Boronat, T., Balart, R., & Torres-Giner, S. (2017). Evaluation of the engineering performance of different bio-based aliphatic homopolyamide tubes prepared by profile extrusion. Polymer Testing, 61, 421-429. doi:10.1016/j.polymertesting.2017.06.004

Chen, L., Pelton, R. E. O., & Smith, T. M. (2016). Comparative life cycle assessment of fossil and bio-based polyethylene terephthalate (PET) bottles. Journal of Cleaner Production, 137, 667-676. doi:10.1016/j.jclepro.2016.07.094

Rosenboom, J.-G., Hohl, D. K., Fleckenstein, P., Storti, G., & Morbidelli, M. (2018). Bottle-grade polyethylene furanoate from ring-opening polymerisation of cyclic oligomers. Nature Communications, 9(1). doi:10.1038/s41467-018-05147-y

Monteiro, S. N., Lopes, F. P. D., Ferreira, A. S., & Nascimento, D. C. O. (2009). Natural-fiber polymer-matrix composites: Cheaper, tougher, and environmentally friendly. JOM, 61(1), 17-22. doi:10.1007/s11837-009-0004-z

Taha, I., & Ziegmann, G. (2006). A Comparison of Mechanical Properties of Natural Fiber Filled Biodegradable and Polyolefin Polymers. Journal of Composite Materials, 40(21), 1933-1946. doi:10.1177/0021998306061304

European Bioplasticshttps://www.european-bioplastics.org/

Shen, L., Worrell, E., & Patel, M. K. (2012). Comparing life cycle energy and GHG emissions of bio-based PET, recycled PET, PLA, and man-made cellulosics. Biofuels, Bioproducts and Biorefining, 6(6), 625-639. doi:10.1002/bbb.1368

Tabone, M. D., Cregg, J. J., Beckman, E. J., & Landis, A. E. (2010). Sustainability Metrics: Life Cycle Assessment and Green Design in Polymers. Environmental Science & Technology, 44(21), 8264-8269. doi:10.1021/es101640n

Carus, M., Eder, A., & Beckmann, J. (2014). GreenPremium Prices Along the Value Chain of Biobased Products. Industrial Biotechnology, 10(2), 83-88. doi:10.1089/ind.2014.1512

Mohanty, A. K., Misra, M., & Drzal, L. T. (2002). Journal of Polymers and the Environment, 10(1/2), 19-26. doi:10.1023/a:1021013921916

Vollrath, F., & Porter, D. (2006). Spider silk as archetypal protein elastomer. Soft Matter, 2(5), 377. doi:10.1039/b600098n

Kelly, F. M., Johnston, J. H., Borrmann, T., & Richardson, M. J. (2008). Functionalised Hybrid Materials of Conducting Polymers with Individual Wool Fibers. Journal of Nanoscience and Nanotechnology, 8(4), 1965-1972. doi:10.1166/jnn.2008.040

Farahani, G. N., Ahmad, I., & Mosadeghzad, Z. (2012). Effect of Fiber Content, Fiber Length and Alkali Treatment on Properties of Kenaf Fiber/UPR Composites Based on Recycled PET Wastes. Polymer-Plastics Technology and Engineering, 51(6), 634-639. doi:10.1080/03602559.2012.659314

De Oliveira Santos, R. P., Castro, D. O., Ruvolo-Filho, A. C., & Frollini, E. (2014). Processing and thermal properties of composites based on recycled PET, sisal fibers, and renewable plasticizers. Journal of Applied Polymer Science, 131(12), n/a-n/a. doi:10.1002/app.40386

Sena Neto, A. R., Araujo, M. A. M., Barboza, R. M. P., Fonseca, A. S., Tonoli, G. H. D., Souza, F. V. D., … Marconcini, J. M. (2015). Comparative study of 12 pineapple leaf fiber varieties for use as mechanical reinforcement in polymer composites. Industrial Crops and Products, 64, 68-78. doi:10.1016/j.indcrop.2014.10.042

Anggraini, V., Asadi, A., Huat, B. B. K., & Nahazanan, H. (2015). Effects of coir fibers on tensile and compressive strength of lime treated soft soil. Measurement, 59, 372-381. doi:10.1016/j.measurement.2014.09.059

Abdullah, N. M., & Ahmad, I. (2013). Potential of using polyester reinforced coconut fiber composites derived from recycling polyethylene terephthalate (PET) waste. Fibers and Polymers, 14(4), 584-590. doi:10.1007/s12221-013-0584-7

Lei, Y., & Wu, Q. (2010). Wood plastic composites based on microfibrillar blends of high density polyethylene/poly(ethylene terephthalate). Bioresource Technology, 101(10), 3665-3671. doi:10.1016/j.biortech.2009.12.069

Ozalp, M. (2010). Study of the effect of adding the powder of waste PET bottles and borax pentahydrate to the urea formaldehyde adhesive applied on plywood. European Journal of Wood and Wood Products, 69(3), 369-374. doi:10.1007/s00107-010-0439-5

Ardekani, S. M., Dehghani, A., Al-Maadeed, M. A., Wahit, M. U., & Hassan, A. (2014). Mechanical and thermal properties of recycled poly(ethylene terephthalate) reinforced newspaper fiber composites. Fibers and Polymers, 15(7), 1531-1538. doi:10.1007/s12221-014-1531-y

Lou, C.-W., Lin, C.-W., Lei, C.-H., Su, K.-H., Hsu, C.-H., Liu, Z.-H., & Lin, J.-H. (2007). PET/PP blend with bamboo charcoal to produce functional composites. Journal of Materials Processing Technology, 192-193, 428-433. doi:10.1016/j.jmatprotec.2007.04.018

Corradini, E., Ito, E. N., Marconcini, J. M., Rios, C. T., Agnelli, J. A. M., & Mattoso, L. H. C. (2009). Interfacial behavior of composites of recycled poly(ethyelene terephthalate) and sugarcane bagasse fiber. Polymer Testing, 28(2), 183-187. doi:10.1016/j.polymertesting.2008.11.014

Chen, R. S., Ab Ghani, M. H., Ahmad, S., Salleh, M. N., & Tarawneh, M. A. (2014). Rice husk flour biocomposites based on recycled high-density polyethylene/polyethylene terephthalate blend: effect of high filler loading on physical, mechanical and thermal properties. Journal of Composite Materials, 49(10), 1241-1253. doi:10.1177/0021998314533361

Kim, S. S., Kim, J., Huang, T. S., Whang, H. S., & Lee, J. (2009). Antimicrobial polyethylene terephthalate (PET) treated with an aromaticN-halamine precursor,m-aramid. Journal of Applied Polymer Science, 114(6), 3835-3840. doi:10.1002/app.31016

Friedrich, K. (1985). Microstructural efficiency and fracture toughness of short fiber/thermoplastic matrix composites. Composites Science and Technology, 22(1), 43-74. doi:10.1016/0266-3538(85)90090-9

Fung, K. L., & Li, R. K. Y. (2006). Mechanical properties of short glass fibre reinforced and functionalized rubber-toughened PET blends. Polymer Testing, 25(7), 923-931. doi:10.1016/j.polymertesting.2006.05.013

Li, Z., Luo, G., Wei, F., & Huang, Y. (2006). Microstructure of carbon nanotubes/PET conductive composites fibers and their properties. Composites Science and Technology, 66(7-8), 1022-1029. doi:10.1016/j.compscitech.2005.08.006

Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062

Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017

George, M., Chae, M., & Bressler, D. C. (2016). Composite materials with bast fibres: Structural, technical, and environmental properties. Progress in Materials Science, 83, 1-23. doi:10.1016/j.pmatsci.2016.04.002

Natural Fibre Demand Risinghttp://cottonanalytics.com/natural-fibre-demand-rising/

Peña-Pichardo, P., Martínez-Barrera, G., Martínez-López, M., Ureña-Núñez, F., & dos Reis, J. M. L. (2018). Recovery of cotton fibers from waste Blue-Jeans and its use in polyester concrete. Construction and Building Materials, 177, 409-416. doi:10.1016/j.conbuildmat.2018.05.137

Mohanty, A. K., Misra, M., & Hinrichsen, G. (2000). Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering, 276-277(1), 1-24. doi:10.1002/(sici)1439-2054(20000301)276:1<1::aid-mame1>3.0.co;2-w

Bayer, F. L. (2002). Polyethylene terephthalate recycling for food-contact applications: testing, safety and technologies: a global perspective. Food Additives & Contaminants, 19(sup1), 111-134. doi:10.1080/02652030110083694

Zou, Y., Reddy, N., & Yang, Y. (2011). Reusing polyester/cotton blend fabrics for composites. Composites Part B: Engineering, 42(4), 763-770. doi:10.1016/j.compositesb.2011.01.022

Oromiehie, A., & Mamizadeh, A. (2004). Recycling PET beverage bottles and improving properties. Polymer International, 53(6), 728-732. doi:10.1002/pi.1389

Elamri, A., Lallam, A., Harzallah, O., & Bencheikh, L. (2007). Mechanical characterization of melt spun fibers from recycled and virgin PET blends. Journal of Materials Science, 42(19), 8271-8278. doi:10.1007/s10853-007-1590-1

Torres-Giner, S., Hilliou, L., Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Madalena, D., Cabedo, L., … Lagaron, J. M. (2018). Melt processability, characterization, and antibacterial activity of compression-molded green composite sheets made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil. Food Packaging and Shelf Life, 17, 39-49. doi:10.1016/j.fpsl.2018.05.002

Wambua, P., Ivens, J., & Verpoest, I. (2003). Natural fibres: can they replace glass in fibre reinforced plastics? Composites Science and Technology, 63(9), 1259-1264. doi:10.1016/s0266-3538(03)00096-4

Thwe, M. M., & Liao, K. (2002). Effects of environmental aging on the mechanical properties of bamboo–glass fiber reinforced polymer matrix hybrid composites. Composites Part A: Applied Science and Manufacturing, 33(1), 43-52. doi:10.1016/s1359-835x(01)00071-9

Baley, C., Busnel, F., Grohens, Y., & Sire, O. (2006). Influence of chemical treatments on surface properties and adhesion of flax fibre–polyester resin. Composites Part A: Applied Science and Manufacturing, 37(10), 1626-1637. doi:10.1016/j.compositesa.2005.10.014

Valadez-Gonzalez, A., Cervantes-Uc, J. M., Olayo, R., & Herrera-Franco, P. J. (1999). Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Composites Part B: Engineering, 30(3), 309-320. doi:10.1016/s1359-8368(98)00054-7

Strömbro, J., & Gudmundson, P. (2008). An anisotropic fibre-network model for mechano-sorptive creep in paper. International Journal of Solids and Structures, 45(22-23), 5765-5787. doi:10.1016/j.ijsolstr.2008.06.010

Dunne, R., Desai, D., & Sadiku, R. (2017). Material characterization of blended sisal-kenaf composites with an ABS matrix. Applied Acoustics, 125, 184-193. doi:10.1016/j.apacoust.2017.03.022

Pereira, L. M., Corrêa, A. C., Souza Filho, M. de sá M. de, Rosa, M. de F., & Ito, E. N. (2017). Rheological, Morphological and Mechanical Characterization of Recycled Poly (Ethylene Terephthalate) Blends and Composites. Materials Research, 20(3), 791-800. doi:10.1590/1980-5373-mr-2016-0870

Torres-Giner, S., Montanes, N., Fombuena, V., Boronat, T., & Sanchez-Nacher, L. (2016). Preparation and characterization of compression-molded green composite sheets made of poly(3-hydroxybutyrate) reinforced with long pita fibers. Advances in Polymer Technology, 37(5), 1305-1315. doi:10.1002/adv.21789

Kim, S.-J., Moon, J.-B., Kim, G.-H., & Ha, C.-S. (2008). Mechanical properties of polypropylene/natural fiber composites: Comparison of wood fiber and cotton fiber. Polymer Testing, 27(7), 801-806. doi:10.1016/j.polymertesting.2008.06.002

Kant, R. (2012). Textile dyeing industry an environmental hazard. Natural Science, 04(01), 22-26. doi:10.4236/ns.2012.41004

Dehghani, A., Madadi Ardekani, S., Al-Maadeed, M. A., Hassan, A., & Wahit, M. U. (2013). Mechanical and thermal properties of date palm leaf fiber reinforced recycled poly (ethylene terephthalate) composites. Materials & Design (1980-2015), 52, 841-848. doi:10.1016/j.matdes.2013.06.022

Hristov, V., & Vasileva, S. (2003). Dynamic Mechanical and Thermal Properties of Modified Poly(propylene) Wood Fiber Composites. Macromolecular Materials and Engineering, 288(10), 798-806. doi:10.1002/mame.200300110

Wang, Y., Gao, J., Ma, Y., & Agarwal, U. S. (2006). Study on mechanical properties, thermal stability and crystallization behavior of PET/MMT nanocomposites. Composites Part B: Engineering, 37(6), 399-407. doi:10.1016/j.compositesb.2006.02.014

Ke, Y.-C., Wu, T.-B., & Xia, Y.-F. (2007). The nucleation, crystallization and dispersion behavior of PET–monodisperse SiO2 composites. Polymer, 48(11), 3324-3336. doi:10.1016/j.polymer.2007.03.059

Blundell, D. J. (1987). On the interpretation of multiple melting peaks in poly(ether ether ketone). Polymer, 28(13), 2248-2251. doi:10.1016/0032-3861(87)90382-x

Yasuniwa, M., Sakamo, K., Ono, Y., & Kawahara, W. (2008). Melting behavior of poly(l-lactic acid): X-ray and DSC analyses of the melting process. Polymer, 49(7), 1943-1951. doi:10.1016/j.polymer.2008.02.034

Kong, Y., & Hay, J. . (2003). Multiple melting behaviour of poly(ethylene terephthalate). Polymer, 44(3), 623-633. doi:10.1016/s0032-3861(02)00814-5

Varga, J. (1995). Interfacial morphologies in carbon fibre-reinforced polypropylene microcomposites. Polymer, 36(25), 4877-4881. doi:10.1016/00323-8619(59)9305e-

De Souza, A. M. C., & Caldeira, C. B. (2015). An investigation on recycled PET/PP and recycled PET/PP-EP compatibilized blends: Rheological, morphological, and mechanical properties. Journal of Applied Polymer Science, 132(17). doi:10.1002/app.41892

Gangil, S., & Bhargav, V. K. (2018). Influence of torrefaction on intrinsic bioconstituents of cotton stalk: TG-insights. Energy, 142, 1066-1073. doi:10.1016/j.energy.2017.10.128

Dan-mallam Yakubu, Abdullah, M. Z., & Yusoff, P. S. M. M. (2013). Mechanical properties of recycled kenaf/polyethylene terephthalate (PET) fiber reinforced polyoxymethylene (POM) hybrid composite. Journal of Applied Polymer Science, 131(3), n/a-n/a. doi:10.1002/app.39831

Nurul Fazita, M. R., Jayaraman, K., Bhattacharyya, D., Mohamad Haafiz, M. K., Saurabh, C., Hussin, M., & H.P.S., A. (2016). Green Composites Made of Bamboo Fabric and Poly (Lactic) Acid for Packaging Applications—A Review. Materials, 9(6), 435. doi:10.3390/ma9060435

Alongi, J., Camino, G., & Malucelli, G. (2013). Heating rate effect on char yield from cotton, poly(ethylene terephthalate) and blend fabrics. Carbohydrate Polymers, 92(2), 1327-1334. doi:10.1016/j.carbpol.2012.10.029

Alongi, J., Carosio, F., & Malucelli, G. (2012). Influence of ammonium polyphosphate-/poly(acrylic acid)-based layer by layer architectures on the char formation in cotton, polyester and their blends. Polymer Degradation and Stability, 97(9), 1644-1653. doi:10.1016/j.polymdegradstab.2012.06.025

Levchik, S. V., & Weil, E. D. (2004). A review on thermal decomposition and combustion of thermoplastic polyesters. Polymers for Advanced Technologies, 15(12), 691-700. doi:10.1002/pat.526

Hujuri, U., Ghoshal, A. K., & Gumma, S. (2013). Temperature-dependent pyrolytic product evolution profile for polyethylene terephthalate. Journal of Applied Polymer Science, n/a-n/a. doi:10.1002/app.39681

Candan, Z., Gardner, D. J., & Shaler, S. M. (2016). Dynamic mechanical thermal analysis (DMTA) of cellulose nanofibril/nanoclay/pMDI nanocomposites. Composites Part B: Engineering, 90, 126-132. doi:10.1016/j.compositesb.2015.12.016

Marques, M. F. V., Lunz, J. N., Aguiar, V. O., Grafova, I., Kemell, M., Visentin, F., … Grafov, A. (2014). Thermal and Mechanical Properties of Sustainable Composites Reinforced with Natural Fibers. Journal of Polymers and the Environment, 23(2), 251-260. doi:10.1007/s10924-014-0687-2

Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037

Negoro, T., Thodsaratpreeyakul, W., Takada, Y., Thumsorn, S., Inoya, H., & Hamada, H. (2016). Role of Crystallinity on Moisture Absorption and Mechanical Performance of Recycled PET Compounds. Energy Procedia, 89, 323-327. doi:10.1016/j.egypro.2016.05.042

Badía, J. D., Vilaplana, F., Karlsson, S., & Ribes-Greus, A. (2009). Thermal analysis as a quality tool for assessing the influence of thermo-mechanical degradation on recycled poly(ethylene terephthalate). Polymer Testing, 28(2), 169-175. doi:10.1016/j.polymertesting.2008.11.010

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem