- -

Osteostatin Inhibits Collagen-Induced Arthritis by Regulation of Immune Activation, Pro-Inflammatory Cytokines, and Osteoclastogenesis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Osteostatin Inhibits Collagen-Induced Arthritis by Regulation of Immune Activation, Pro-Inflammatory Cytokines, and Osteoclastogenesis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Nacher-Juan, Josep es_ES
dc.contributor.author Terencio Silvestre, Mª Carmen es_ES
dc.contributor.author Alcaraz Tormo, Mª José es_ES
dc.contributor.author Ferrandiz Manglano, Mª Luisa es_ES
dc.date.accessioned 2020-06-06T03:32:46Z
dc.date.available 2020-06-06T03:32:46Z
dc.date.issued 2019-08-07 es_ES
dc.identifier.uri http://hdl.handle.net/10251/145549
dc.description.abstract [EN] In chronic inflammatory joint diseases, such as rheumatoid arthritis, there is an important bone loss. Parathyroid hormone-related protein (PTHrP) and related peptides have shown osteoinductive properties in bone regeneration models, but there are no data on inflammatory joint destruction. We have investigated whether the PTHrP (107-111) C-terminal peptide (osteostatin) could control the development of collagen-induced arthritis in mice. Administration of osteostatin (80 or 120 mu g/kg s.c.) after the onset of disease decreased the severity of arthritis as well as cartilage and bone degradation. This peptide reduced serum IgG2a levels as well as T cell activation, with the downregulation of ROR gamma t+CD4+ T cells and upregulation of FoxP3+CD8+ T cells in lymph nodes. The levels of key cytokines, such as interleukin(IL)-1 beta, IL-2, IL-6, IL-17, and tumor necrosis factor-alpha in mice paws were decreased by osteostatin treatment, whereas IL-10 was enhanced. Bone protection was related to reductions in receptor activator of nuclear factor-kappa B ligand, Dickkopf-related protein 1, and joint osteoclast area. Osteostatin improves arthritis and controls bone loss by inhibiting immune activation, pro-inflammatory cytokines, and osteoclastogenesis. Our results support the interest of osteostatin for the treatment of inflammatory joint conditions. es_ES
dc.description.sponsorship This work has been funded by grant SAF2017-85806-R (Ministerio de Ciencia, Innovación y Universidades, Spain, FEDER). J. Nácher-Juan thanks Universitat de València, Spain, for a PhD fellowship (INV18-01-13-01). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof International Journal of Molecular Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Osteostatin es_ES
dc.subject Arthritis es_ES
dc.subject Inflammation es_ES
dc.subject Immune response es_ES
dc.subject Cartilage destruction es_ES
dc.subject Bone erosion es_ES
dc.title Osteostatin Inhibits Collagen-Induced Arthritis by Regulation of Immune Activation, Pro-Inflammatory Cytokines, and Osteoclastogenesis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ijms20163845 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UV//INV18-01-13-01/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/SAF2017-85806-R/ES/MECANISMOS REGULADORES DE LA INFLAMACION Y SU RESOLUCION EN ENFERMEDADES CRONICAS ARTICULARES Y DE LA PIEL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Nacher-Juan, J.; Terencio Silvestre, MC.; Alcaraz Tormo, MJ.; Ferrandiz Manglano, ML. (2019). Osteostatin Inhibits Collagen-Induced Arthritis by Regulation of Immune Activation, Pro-Inflammatory Cytokines, and Osteoclastogenesis. International Journal of Molecular Sciences. 20(16):1-18. https://doi.org/10.3390/ijms20163845 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ijms20163845 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 16 es_ES
dc.identifier.eissn 1422-0067 es_ES
dc.identifier.pmid 31394717 es_ES
dc.identifier.pmcid PMC6721041 es_ES
dc.relation.pasarela S\403069 es_ES
dc.contributor.funder Universitat de València es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references De Gortázar, A. R., Alonso, V., Alvarez-Arroyo, M. V., & Esbrit, P. (2006). Transient Exposure to PTHrP (107-139) Exerts Anabolic Effects through Vascular Endothelial Growth Factor Receptor 2 in Human Osteoblastic Cells In Vitro. Calcified Tissue International, 79(5), 360-369. doi:10.1007/s00223-006-0099-y es_ES
dc.description.references Trejo, C. G., Lozano, D., Manzano, M., Doadrio, J. C., Salinas, A. J., Dapía, S., … Buján, J. (2010). The osteoinductive properties of mesoporous silicate coated with osteostatin in a rabbit femur cavity defect model. Biomaterials, 31(33), 8564-8573. doi:10.1016/j.biomaterials.2010.07.103 es_ES
dc.description.references Fenton, A. J., Martin, T. J., & Nicholson, G. C. (2009). Carboxyl-terminal parathyroid hormone-related protein inhibits bone resorption by isolated chicken osteoclasts. Journal of Bone and Mineral Research, 9(4), 515-519. doi:10.1002/jbmr.5650090411 es_ES
dc.description.references Firestein, G. S., & McInnes, I. B. (2017). Immunopathogenesis of Rheumatoid Arthritis. Immunity, 46(2), 183-196. doi:10.1016/j.immuni.2017.02.006 es_ES
dc.description.references Scholtysek, C., Kronke, G., & Schett, G. (2012). Inflammation-Associated Changes in Bone Homeostasis. Inflammation & Allergy-Drug Targets, 11(3), 188-195. doi:10.2174/187152812800392706 es_ES
dc.description.references Szentpétery, Á., Horváth, Á., Gulyás, K., Pethö, Z., Bhattoa, H. P., Szántó, S., … Szekanecz, Z. (2017). Effects of targeted therapies on the bone in arthritides. Autoimmunity Reviews, 16(3), 313-320. doi:10.1016/j.autrev.2017.01.014 es_ES
dc.description.references Kohno, H., Shigeno, C., Kasai, R., Akiyama, H., Iida, H., Tsuboyama, T., … Nakamura, T. (1997). Synovial Fluids from Patients with Osteoarthritis and Rheumatoid Arthritis Contain High Levels of Parathyroid Hormone-Related Peptide. Journal of Bone and Mineral Research, 12(5), 847-854. doi:10.1359/jbmr.1997.12.5.847 es_ES
dc.description.references Fischer, J., Dickhut, A., Rickert, M., & Richter, W. (2010). Human articular chondrocytes secrete parathyroid hormone-related protein and inhibit hypertrophy of mesenchymal stem cells in coculture during chondrogenesis. Arthritis & Rheumatism, 62(9), 2696-2706. doi:10.1002/art.27565 es_ES
dc.description.references Chen, X., Macica, C. M., Nasiri, A., & Broadus, A. E. (2008). Regulation of articular chondrocyte proliferation and differentiation by indian hedgehog and parathyroid hormone-related protein in mice. Arthritis & Rheumatism, 58(12), 3788-3797. doi:10.1002/art.23985 es_ES
dc.description.references HORIUCHI, T., YOSHIDA, T., KOSHIHARA, Y., SAKAMOTO, H., KANAI, H., YAMAMOTO, S., & ITO, H. (1999). The Increase of Parathyroid Hormone-Related Peptide and Cytokine Levels in Synovial Fluid of Elderly Rheumatoid Arthritis and Osteoarthritis. Endocrine Journal, 46(5), 643-649. doi:10.1507/endocrj.46.643 es_ES
dc.description.references Platas, J., Guillén, M. I., Gomar, F., Castejón, M. A., Esbrit, P., & Alcaraz, M. J. (2016). Anti-senescence and Anti-inflammatory Effects of the C-terminal Moiety of PTHrP Peptides in OA Osteoblasts. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, glw100. doi:10.1093/gerona/glw100 es_ES
dc.description.references Myers, L. K., Rosloniec, E. F., Cremer, M. A., & Kang, A. H. (1997). Collagen-induced arthritis, an animal model of autoimmunity. Life Sciences, 61(19), 1861-1878. doi:10.1016/s0024-3205(97)00480-3 es_ES
dc.description.references Williams, P. J., Jones, R. H. V., & Rademacher, T. W. (1998). Correlation Between IgG Anti-Type II Collagen Levels and Arthritic Severity in Murine Arthritis. Autoimmunity, 27(4), 201-207. doi:10.3109/08916939808993831 es_ES
dc.description.references Watson, W. C., & Townes, A. S. (1985). Genetic susceptibility to murine collagen II autoimmune arthritis. Proposed relationship to the IgG2 autoantibody subclass response, complement C5, major histocompatibility complex (MHC) and non-MHC loci. Journal of Experimental Medicine, 162(6), 1878-1891. doi:10.1084/jem.162.6.1878 es_ES
dc.description.references Lories, R. J., Corr, M., & Lane, N. E. (2013). To Wnt or not to Wnt: the bone and joint health dilemma. Nature Reviews Rheumatology, 9(6), 328-339. doi:10.1038/nrrheum.2013.25 es_ES
dc.description.references Schett, G., & Teitelbaum, S. L. (2009). Osteoclasts and Arthritis. Journal of Bone and Mineral Research, 24(7), 1142-1146. doi:10.1359/jbmr.090533 es_ES
dc.description.references Cush, J. J., Splawski, J. B., Thomas, R., Mcfarlin, J. E., Schulze-Koops, H., Davis, L. S., … Lipsky, P. E. (1995). Elevated interleukin-10 levels in patients with rheumatoid arthritis. Arthritis & Rheumatism, 38(1), 96-104. doi:10.1002/art.1780380115 es_ES
dc.description.references Isomäki, P., Luukkainen, R., Saario, R., Toivanen, P., & Punnonen, J. (1996). Interleukin-10 functions as an antiinflammatory cytokine in rheumatoid synovium. Arthritis & Rheumatism, 39(3), 386-395. doi:10.1002/art.1780390306 es_ES
dc.description.references Finnegan, A., Kaplan, C. D., Cao, Y., Eibel, H., Glant, T. T., & Zhang, J. (2003). Arthritis Research & Therapy, 5(1), R18. doi:10.1186/ar601 es_ES
dc.description.references Rönnelid, J., Lysholm, J., Engström-Laurent, A., Klareskog, L., & Heyman, B. (1994). Local anti—type ii collagen antibody production in rheumatoid arthritis synovial fluid. Arthritis & Rheumatism, 37(7), 1023-1029. doi:10.1002/art.1780370707 es_ES
dc.description.references Croxford, A. M., Whittingham, S., McNaughton, D., Nandakumar, K. S., Holmdahl, R., & Rowley, M. J. (2013). Type II collagen-specific antibodies induce cartilage damage in mice independent of inflammation. Arthritis & Rheumatism, 65(3), 650-659. doi:10.1002/art.37805 es_ES
dc.description.references Nandakumar, K., Bäcklund, J., Vestberg, M., & Holmdahl, R. (2004). Arthritis Research & Therapy, 6(6), R544. doi:10.1186/ar1217 es_ES
dc.description.references Zhu, J., & Paul, W. E. (2010). Peripheral CD4+ T-cell differentiation regulated by networks of cytokines and transcription factors. Immunological Reviews, 238(1), 247-262. doi:10.1111/j.1600-065x.2010.00951.x es_ES
dc.description.references Lubberts, E. (2010). Th17 cytokines and arthritis. Seminars in Immunopathology, 32(1), 43-53. doi:10.1007/s00281-009-0189-9 es_ES
dc.description.references Ito, Y., Usui, T., Kobayashi, S., Iguchi-Hashimoto, M., Ito, H., Yoshitomi, H., … Mimori, T. (2009). Gamma/delta T cells are the predominant source of interleukin-17 in affected joints in collagen-induced arthritis, but not in rheumatoid arthritis. Arthritis & Rheumatism, 60(8), 2294-2303. doi:10.1002/art.24687 es_ES
dc.description.references Lubberts, E., Koenders, M. I., Oppers-Walgreen, B., van den Bersselaar, L., Coenen-de Roo, C. J. J., Joosten, L. A. B., & van den Berg, W. B. (2004). Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis & Rheumatism, 50(2), 650-659. doi:10.1002/art.20001 es_ES
dc.description.references Koenders, M. I., Marijnissen, R. J., Devesa, I., Lubberts, E., Joosten, L. A. B., Roth, J., … van den Berg, W. B. (2011). Tumor necrosis factor-interleukin-17 interplay induces S100A8, interleukin-1β, and matrix metalloproteinases, and drives irreversible cartilage destruction in murine arthritis: Rationale for combination treatment during arthritis. Arthritis & Rheumatism, 63(8), 2329-2339. doi:10.1002/art.30418 es_ES
dc.description.references Lubberts, E., van den Bersselaar, L., Oppers-Walgreen, B., Schwarzenberger, P., Coenen-de Roo, C. J. J., Kolls, J. K., … van den Berg, W. B. (2003). IL-17 Promotes Bone Erosion in Murine Collagen-Induced Arthritis Through Loss of the Receptor Activator of NF-κB Ligand/Osteoprotegerin Balance. The Journal of Immunology, 170(5), 2655-2662. doi:10.4049/jimmunol.170.5.2655 es_ES
dc.description.references Cools, N., Ponsaerts, P., Van Tendeloo, V. F. I., & Berneman, Z. N. (2007). Regulatory T Cells and Human Disease. Clinical and Developmental Immunology, 2007, 1-10. doi:10.1155/2007/89195 es_ES
dc.description.references Kelchtermans, H., Geboes, L., Mitera, T., Huskens, D., Leclercq, G., & Matthys, P. (2008). Activated CD4+CD25+ regulatory T cells inhibit osteoclastogenesis and collagen-induced arthritis. Annals of the Rheumatic Diseases, 68(5), 744-750. doi:10.1136/ard.2007.086066 es_ES
dc.description.references Notley, C. A., McCann, F. E., Inglis, J. J., & Williams, R. O. (2010). ANTI-CD3 therapy expands the numbers of CD4+ and CD8+ treg cells and induces sustained amelioration of collagen-induced arthritis. Arthritis & Rheumatism, 62(1), 171-178. doi:10.1002/art.25058 es_ES
dc.description.references Zaiss, M. M., Frey, B., Hess, A., Zwerina, J., Luther, J., Nimmerjahn, F., … David, J.-P. (2010). Regulatory T Cells Protect from Local and Systemic Bone Destruction in Arthritis. The Journal of Immunology, 184(12), 7238-7246. doi:10.4049/jimmunol.0903841 es_ES
dc.description.references Yu, Y., Ma, X., Gong, R., Zhu, J., Wei, L., & Yao, J. (2018). Recent advances in CD8+ regulatory T�cell research (Review). Oncology Letters. doi:10.3892/ol.2018.8378 es_ES
dc.description.references Nakagawa, T., Tsuruoka, M., Ogura, H., Okuyama, Y., Arima, Y., Hirano, T., & Murakami, M. (2009). IL-6 positively regulates Foxp3+CD8+ T cells in vivo. International Immunology, 22(2), 129-139. doi:10.1093/intimm/dxp119 es_ES
dc.description.references Filaci, G., Fenoglio, D., & Indiveri, F. (2010). CD8+T regulatory/suppressor cells and their relationships with autoreactivity and autoimmunity. Autoimmunity, 44(1), 51-57. doi:10.3109/08916931003782171 es_ES
dc.description.references Sun, J., Yang, Y., Huo, X., Zhu, B., Li, Z., Jiang, X., … Yang, J. (2019). Efficient Therapeutic Function and Mechanisms of Human Polyclonal CD8+CD103+Foxp3+ Regulatory T Cells on Collagen-Induced Arthritis in Mice. Journal of Immunology Research, 2019, 1-12. doi:10.1155/2019/8575407 es_ES
dc.description.references Stolina, M., Adamu, S., Ominsky, M., Dwyer, D., Asuncion, F., Geng, Z., … Kostenuik, P. J. (2005). RANKL is a Marker and Mediator of Local and Systemic Bone Loss in Two Rat Models of Inflammatory Arthritis. Journal of Bone and Mineral Research, 20(10), 1756-1765. doi:10.1359/jbmr.050601 es_ES
dc.description.references Nanes, M. S. (2003). Tumor necrosis factor-α: molecular and cellular mechanisms in skeletal pathology. Gene, 321, 1-15. doi:10.1016/s0378-1119(03)00841-2 es_ES
dc.description.references Diarra, D., Stolina, M., Polzer, K., Zwerina, J., Ominsky, M. S., Dwyer, D., … Schett, G. (2007). Dickkopf-1 is a master regulator of joint remodeling. Nature Medicine, 13(2), 156-163. doi:10.1038/nm1538 es_ES
dc.description.references Nakashima, T., Kobayashi, Y., Yamasaki, S., Kawakami, A., Eguchi, K., Sasaki, H., & Sakai, H. (2000). Protein Expression and Functional Difference of Membrane-Bound and Soluble Receptor Activator of NF-κB Ligand: Modulation of the Expression by Osteotropic Factors and Cytokines. Biochemical and Biophysical Research Communications, 275(3), 768-775. doi:10.1006/bbrc.2000.3379 es_ES
dc.description.references Sen, M. (2005). Wnt signalling in rheumatoid arthritis. Rheumatology, 44(6), 708-713. doi:10.1093/rheumatology/keh553 es_ES
dc.description.references Walsh, N. C., & Gravallese, E. M. (2010). Bone remodeling in rheumatic disease: a question of balance. Immunological Reviews, 233(1), 301-312. doi:10.1111/j.0105-2896.2009.00857.x es_ES
dc.description.references Braun, T., & Zwerina, J. (2011). Positive regulators of osteoclastogenesis and bone resorption in rheumatoid arthritis. Arthritis Research & Therapy, 13(4), 235. doi:10.1186/ar3380 es_ES
dc.description.references Kerschan-Schindl, K., Ebenbichler, G., Föeger-Samwald, U., Leiss, H., Gesslbauer, C., Herceg, M., … Pietschmann, P. (2018). Rheumatoid arthritis in remission. Wiener klinische Wochenschrift, 131(1-2), 1-7. doi:10.1007/s00508-018-1386-0 es_ES
dc.description.references Marenzana, M., Vugler, A., Moore, A., & Robinson, M. (2013). Effect of sclerostin-neutralising antibody on periarticular and systemic bone in a murine model of rheumatoid arthritis: a microCT study. Arthritis Research & Therapy, 15(5), R125. doi:10.1186/ar4305 es_ES
dc.description.references Wehmeyer, C., Frank, S., Beckmann, D., Böttcher, M., Cromme, C., König, U., … Dankbar, B. (2016). Sclerostin inhibition promotes TNF-dependent inflammatory joint destruction. Science Translational Medicine, 8(330), 330ra35-330ra35. doi:10.1126/scitranslmed.aac4351 es_ES
dc.description.references Ji, Y., Qiao, H., He, J., Li, W., Chen, R., Wang, J., … Chen, Z. (2017). Functional oligopeptide as a novel strategy for drug delivery. Journal of Drug Targeting, 25(7), 597-607. doi:10.1080/1061186x.2017.1309044 es_ES
dc.description.references Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M., & Altman, D. G. (2010). Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research. PLoS Biology, 8(6), e1000412. doi:10.1371/journal.pbio.1000412 es_ES
dc.description.references Maicas, N., Ibáñez, L., Alcaraz, M. J., Úbeda, A., & Ferrándiz, M. L. (2011). Prostaglandin D2 regulates joint inflammation and destruction in murine collagen-induced arthritis. Arthritis & Rheumatism, 64(1), 130-140. doi:10.1002/art.30656 es_ES
dc.description.references Payá, M., Terencio, M. C., Ferrándiz, M. L., & Alcaraz, M. J. (1996). Involvement of secretory phospholipase A2 activity in the zymosan rat air pouch model of inflammation. British Journal of Pharmacology, 117(8), 1773-1779. doi:10.1111/j.1476-5381.1996.tb15353.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem