Mostrar el registro sencillo del ítem
dc.contributor.author | Ayabaca-Sarria, Cesar | es_ES |
dc.contributor.author | Vila, C. | es_ES |
dc.date.accessioned | 2020-06-06T03:32:51Z | |
dc.date.available | 2020-06-06T03:32:51Z | |
dc.date.issued | 2020-01-14 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/145552 | |
dc.description.abstract | [EN] Material removal technologies should be thoroughly analyzed not only to optimize operations but also to minimize the different waste emissions and obtain cleaner production centers. The study of environmental sustainability in manufacturing processes, which is rapidly gaining importance, requires activity modeling with material and resource inputs and outputs and, most importantly, the definition of a balanced scorecard with suitable indicators for different levels, including the operational level. This paper proposes a metrics deployment approach for the different stages of the product life cycle, including a conceptual framework of high-level indicators and the definition of machining process indicators from different perspectives. This set of metrics enables methodological measurement and analysis and integrates the results into aggregated indicators that can be considered for continuous improvement strategies. This approach was validated by five case studies of experimental testing of the sustainability indicators in material removal operations. The results helped to confirm or modify the approach and to adjust the parameter definitions to optimize the initial sustainability objectives. | es_ES |
dc.description.sponsorship | This research was funded by the Escuela Politecnica Nacional (Ecuador) Research Project: PIS 16-15, the Universitat Politecnica de Valencia UPV (Spain) and the Carolina Foundation (Spanish Government Scholarships) Call 2017. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Materials | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Green manufacturing | es_ES |
dc.subject | Sustainability metrics | es_ES |
dc.subject | Cleaner product life cycle | es_ES |
dc.subject | Material removal processes | es_ES |
dc.subject.classification | INGENIERIA DE LOS PROCESOS DE FABRICACION | es_ES |
dc.title | An Approach to Sustainable Metrics Definition and Evaluation for Green Manufacturing in Material Removal Processes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ma13020373 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EPN//PIS 16-15/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Ayabaca-Sarria, C.; Vila, C. (2020). An Approach to Sustainable Metrics Definition and Evaluation for Green Manufacturing in Material Removal Processes. Materials. 13(2):1-21. https://doi.org/10.3390/ma13020373 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/ma13020373 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 21 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1996-1944 | es_ES |
dc.identifier.pmid | 31947526 | es_ES |
dc.identifier.pmcid | PMC7013728 | es_ES |
dc.relation.pasarela | S\400688 | es_ES |
dc.contributor.funder | Fundación Carolina | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Escuela Politécnica Nacional, Ecuador | es_ES |
dc.description.references | Brundtland, G. H. (1987). Our Common Future—Call for Action. Environmental Conservation, 14(4), 291-294. doi:10.1017/s0376892900016805 | es_ES |
dc.description.references | Berke, P. R., & Conroy, M. M. (2000). Are We Planning for Sustainable Development? Journal of the American Planning Association, 66(1), 21-33. doi:10.1080/01944360008976081 | es_ES |
dc.description.references | De Ron, A. J. (1998). Sustainable production: The ultimate result of a continuous improvement. International Journal of Production Economics, 56-57, 99-110. doi:10.1016/s0925-5273(98)00005-x | es_ES |
dc.description.references | Aarseth, W., Ahola, T., Aaltonen, K., Økland, A., & Andersen, B. (2017). Project sustainability strategies: A systematic literature review. International Journal of Project Management, 35(6), 1071-1083. doi:10.1016/j.ijproman.2016.11.006 | es_ES |
dc.description.references | Jansen, L. (2003). The challenge of sustainable development. Journal of Cleaner Production, 11(3), 231-245. doi:10.1016/s0959-6526(02)00073-2 | es_ES |
dc.description.references | Vieira, L. C., & Amaral, F. G. (2016). Barriers and strategies applying Cleaner Production: a systematic review. Journal of Cleaner Production, 113, 5-16. doi:10.1016/j.jclepro.2015.11.034 | es_ES |
dc.description.references | Rusman, E., van Bruggen, J., Sloep, P., & Koper, R. (2010). Fostering trust in virtual project teams: Towards a design framework grounded in a TrustWorthiness ANtecedents (TWAN) schema. International Journal of Human-Computer Studies, 68(11), 834-850. doi:10.1016/j.ijhcs.2010.07.003 | es_ES |
dc.description.references | Elkington, J. (1994). Towards the Sustainable Corporation: Win-Win-Win Business Strategies for Sustainable Development. California Management Review, 36(2), 90-100. doi:10.2307/41165746 | es_ES |
dc.description.references | Zackrisson, M., Kurdve, M., Shahbazi, S., Wiktorsson, M., Winroth, M., Landström, A., … Myrelid, A. (2017). Sustainability Performance Indicators at Shop Floor Level in Large Manufacturing Companies. Procedia CIRP, 61, 457-462. doi:10.1016/j.procir.2016.11.199 | es_ES |
dc.description.references | Shuaib, M., Seevers, D., Zhang, X., Badurdeen, F., Rouch, K. E., & Jawahir, I. S. (2014). Product Sustainability Index (ProdSI). Journal of Industrial Ecology, 18(4), 491-507. doi:10.1111/jiec.12179 | es_ES |
dc.description.references | Jayal, A. D., Badurdeen, F., Dillon, O. W., & Jawahir, I. S. (2010). Sustainable manufacturing: Modeling and optimization challenges at the product, process and system levels. CIRP Journal of Manufacturing Science and Technology, 2(3), 144-152. doi:10.1016/j.cirpj.2010.03.006 | es_ES |
dc.description.references | Singh, S., Olugu, E. U., & Musa, S. N. (2016). Development of Sustainable Manufacturing Performance Evaluation Expert System for Small and Medium Enterprises. Procedia CIRP, 40, 608-613. doi:10.1016/j.procir.2016.01.142 | es_ES |
dc.description.references | Rajurkar, K. P., Hadidi, H., Pariti, J., & Reddy, G. C. (2017). Review of Sustainability Issues in Non-Traditional Machining Processes. Procedia Manufacturing, 7, 714-720. doi:10.1016/j.promfg.2016.12.106 | es_ES |
dc.description.references | Peralta Álvarez, M. E., Marcos Bárcena, M., & Aguayo González, F. (2017). On the sustainability of machining processes. Proposal for a unified framework through the triple bottom-line from an understanding review. Journal of Cleaner Production, 142, 3890-3904. doi:10.1016/j.jclepro.2016.10.071 | es_ES |
dc.description.references | Bhanot, N., Rao, P. V., & Deshmukh, S. G. (2017). An integrated approach for analysing the enablers and barriers of sustainable manufacturing. Journal of Cleaner Production, 142, 4412-4439. doi:10.1016/j.jclepro.2016.11.123 | es_ES |
dc.description.references | Eastwood, M. D., & Haapala, K. R. (2015). A unit process model based methodology to assist product sustainability assessment during design for manufacturing. Journal of Cleaner Production, 108, 54-64. doi:10.1016/j.jclepro.2015.08.105 | es_ES |
dc.description.references | Garretson, I. C., Mani, M., Leong, S., Lyons, K. W., & Haapala, K. R. (2016). Terminology to support manufacturing process characterization and assessment for sustainable production. Journal of Cleaner Production, 139, 986-1000. doi:10.1016/j.jclepro.2016.08.103 | es_ES |
dc.description.references | Helleno, A. L., de Moraes, A. J. I., & Simon, A. T. (2017). Integrating sustainability indicators and Lean Manufacturing to assess manufacturing processes: Application case studies in Brazilian industry. Journal of Cleaner Production, 153, 405-416. doi:10.1016/j.jclepro.2016.12.072 | es_ES |
dc.description.references | Kluczek, A. (2017). An Overall Multi-criteria Approach to Sustainability Assessment of Manufacturing Processes. Procedia Manufacturing, 8, 136-143. doi:10.1016/j.promfg.2017.02.016 | es_ES |
dc.description.references | Latif, H. H., Gopalakrishnan, B., Nimbarte, A., & Currie, K. (2017). Sustainability index development for manufacturing industry. Sustainable Energy Technologies and Assessments, 24, 82-95. doi:10.1016/j.seta.2017.01.010 | es_ES |
dc.description.references | Moldavska, A., & Welo, T. (2017). The concept of sustainable manufacturing and its definitions: A content-analysis based literature review. Journal of Cleaner Production, 166, 744-755. doi:10.1016/j.jclepro.2017.08.006 | es_ES |
dc.description.references | Winroth, M., Almström, P., & Andersson, C. (2016). Sustainable production indicators at factory level. Journal of Manufacturing Technology Management, 27(6), 842-873. doi:10.1108/jmtm-04-2016-0054 | es_ES |
dc.description.references | Linke, B., Das, J., Lam, M., & Ly, C. (2014). Sustainability Indicators for Finishing Operations based on Process Performance and Part Quality. Procedia CIRP, 14, 564-569. doi:10.1016/j.procir.2014.03.017 | es_ES |
dc.description.references | Vila, C., Ayabaca, C., Díaz-Campoverde, C., & Calle, O. (2019). Sustainability Analysis of AISI 1018 Turning Operations under Surface Integrity Criteria. Sustainability, 11(17), 4786. doi:10.3390/su11174786 | es_ES |
dc.description.references | Bhanot, N., Rao, P. V., & Deshmukh, S. G. (2016). An Assessment of Sustainability for Turning Process in an Automobile Firm. Procedia CIRP, 48, 538-543. doi:10.1016/j.procir.2016.03.024 | es_ES |
dc.description.references | Bhanot, N., Rao, P. V., & Deshmukh, S. G. (2015). Sustainable Manufacturing: An Interaction Analysis for Machining Parameters using Graph Theory. Procedia - Social and Behavioral Sciences, 189, 57-63. doi:10.1016/j.sbspro.2015.03.192 | es_ES |
dc.description.references | Gupta, M. K., Sood, P. K., Singh, G., & Sharma, V. S. (2017). Sustainable machining of aerospace material – Ti (grade-2) alloy: Modeling and optimization. Journal of Cleaner Production, 147, 614-627. doi:10.1016/j.jclepro.2017.01.133 | es_ES |
dc.description.references | Hegab, H. A., Darras, B., & Kishawy, H. A. (2018). Towards sustainability assessment of machining processes. Journal of Cleaner Production, 170, 694-703. doi:10.1016/j.jclepro.2017.09.197 | es_ES |
dc.description.references | Kadam, G. S., & Pawade, R. S. (2017). Surface integrity and sustainability assessment in high-speed machining of Inconel 718 – An eco-friendly green approach. Journal of Cleaner Production, 147, 273-283. doi:10.1016/j.jclepro.2017.01.104 | es_ES |
dc.description.references | Benedicto, E., Carou, D., & Rubio, E. M. (2017). Technical, Economic and Environmental Review of the Lubrication/Cooling Systems Used in Machining Processes. Procedia Engineering, 184, 99-116. doi:10.1016/j.proeng.2017.04.075 | es_ES |
dc.description.references | Zhao, G. Y., Liu, Z. Y., He, Y., Cao, H. J., & Guo, Y. B. (2017). Energy consumption in machining: Classification, prediction, and reduction strategy. Energy, 133, 142-157. doi:10.1016/j.energy.2017.05.110 | es_ES |
dc.description.references | Abbas, A. T., Benyahia, F., El Rayes, M. M., Pruncu, C., Taha, M. A., & Hegab, H. (2019). Towards Optimization of Machining Performance and Sustainability Aspects when Turning AISI 1045 Steel under Different Cooling and Lubrication Strategies. Materials, 12(18), 3023. doi:10.3390/ma12183023 | es_ES |
dc.description.references | Ali, R., Mia, M., Khan, A., Chen, W., Gupta, M., & Pruncu, C. (2019). Multi-Response Optimization of Face Milling Performance Considering Tool Path Strategies in Machining of Al-2024. Materials, 12(7), 1013. doi:10.3390/ma12071013 | es_ES |
dc.description.references | Li, Y., Zheng, G., Cheng, X., Yang, X., Xu, R., & Zhang, H. (2019). Cutting Performance Evaluation of the Coated Tools in High-Speed Milling of AISI 4340 Steel. Materials, 12(19), 3266. doi:10.3390/ma12193266 | es_ES |
dc.description.references | Gupta, M., Pruncu, C., Mia, M., Singh, G., Singh, S., Prakash, C., … Gill, H. (2018). Machinability Investigations of Inconel-800 Super Alloy under Sustainable Cooling Conditions. Materials, 11(11), 2088. doi:10.3390/ma11112088 | es_ES |
dc.description.references | Gamage, J. R., DeSilva, A. K. M., Chantzis, D., & Antar, M. (2017). Sustainable machining: Process energy optimisation of wire electrodischarge machining of Inconel and titanium superalloys. Journal of Cleaner Production, 164, 642-651. doi:10.1016/j.jclepro.2017.06.186 | es_ES |
dc.description.references | Gunda, R. K., Reddy, N. S. K., & Kishawy, H. A. (2016). A Novel Technique to Achieve Sustainable Machining System. Procedia CIRP, 40, 30-34. doi:10.1016/j.procir.2016.01.045 | es_ES |
dc.description.references | Lu, T., & Jawahir, I. S. (2015). Metrics-based Sustainability Evaluation of Cryogenic Machining. Procedia CIRP, 29, 520-525. doi:10.1016/j.procir.2015.02.067 | es_ES |
dc.description.references | Pusavec, F., Deshpande, A., Yang, S., M’Saoubi, R., Kopac, J., Dillon, O. W., & Jawahir, I. S. (2014). Sustainable machining of high temperature Nickel alloy – Inconel 718: part 1 – predictive performance models. Journal of Cleaner Production, 81, 255-269. doi:10.1016/j.jclepro.2014.06.040 | es_ES |
dc.description.references | Goindi, G. S., & Sarkar, P. (2017). Dry machining: A step towards sustainable machining – Challenges and future directions. Journal of Cleaner Production, 165, 1557-1571. doi:10.1016/j.jclepro.2017.07.235 | es_ES |
dc.description.references | Shin, S.-J., Woo, J., & Rachuri, S. (2017). Energy efficiency of milling machining: Component modeling and online optimization of cutting parameters. Journal of Cleaner Production, 161, 12-29. doi:10.1016/j.jclepro.2017.05.013 | es_ES |
dc.description.references | Um, J., Gontarz, A., & Stroud, I. (2015). Developing Energy Estimation Model Based on Sustainability KPI of Machine Tools. Procedia CIRP, 26, 217-222. doi:10.1016/j.procir.2015.03.002 | es_ES |
dc.description.references | Zhang, T., Owodunni, O., & Gao, J. (2015). Scenarios in Multi-objective Optimisation of Process Parameters for Sustainable Machining. Procedia CIRP, 26, 373-378. doi:10.1016/j.procir.2014.07.186 | es_ES |
dc.description.references | Gao, R., Wang, L., Teti, R., Dornfeld, D., Kumara, S., Mori, M., & Helu, M. (2015). Cloud-enabled prognosis for manufacturing. CIRP Annals, 64(2), 749-772. doi:10.1016/j.cirp.2015.05.011 | es_ES |
dc.description.references | Menzel, C., & Mayer, R. J. (s. f.). The IDEF Family of Languages. International Handbooks on Information Systems, 215-249. doi:10.1007/3-540-26661-5_10 | es_ES |
dc.description.references | Dornfeld, D. A. (2014). Moving towards green and sustainable manufacturing. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(1), 63-66. doi:10.1007/s40684-014-0010-7 | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |
dc.subject.ods | 12.- Garantizar las pautas de consumo y de producción sostenibles | es_ES |