- -

An Approach to Sustainable Metrics Definition and Evaluation for Green Manufacturing in Material Removal Processes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An Approach to Sustainable Metrics Definition and Evaluation for Green Manufacturing in Material Removal Processes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ayabaca-Sarria, Cesar es_ES
dc.contributor.author Vila, C. es_ES
dc.date.accessioned 2020-06-06T03:32:51Z
dc.date.available 2020-06-06T03:32:51Z
dc.date.issued 2020-01-14 es_ES
dc.identifier.uri http://hdl.handle.net/10251/145552
dc.description.abstract [EN] Material removal technologies should be thoroughly analyzed not only to optimize operations but also to minimize the different waste emissions and obtain cleaner production centers. The study of environmental sustainability in manufacturing processes, which is rapidly gaining importance, requires activity modeling with material and resource inputs and outputs and, most importantly, the definition of a balanced scorecard with suitable indicators for different levels, including the operational level. This paper proposes a metrics deployment approach for the different stages of the product life cycle, including a conceptual framework of high-level indicators and the definition of machining process indicators from different perspectives. This set of metrics enables methodological measurement and analysis and integrates the results into aggregated indicators that can be considered for continuous improvement strategies. This approach was validated by five case studies of experimental testing of the sustainability indicators in material removal operations. The results helped to confirm or modify the approach and to adjust the parameter definitions to optimize the initial sustainability objectives. es_ES
dc.description.sponsorship This research was funded by the Escuela Politecnica Nacional (Ecuador) Research Project: PIS 16-15, the Universitat Politecnica de Valencia UPV (Spain) and the Carolina Foundation (Spanish Government Scholarships) Call 2017. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Materials es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Green manufacturing es_ES
dc.subject Sustainability metrics es_ES
dc.subject Cleaner product life cycle es_ES
dc.subject Material removal processes es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.title An Approach to Sustainable Metrics Definition and Evaluation for Green Manufacturing in Material Removal Processes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ma13020373 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EPN//PIS 16-15/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Ayabaca-Sarria, C.; Vila, C. (2020). An Approach to Sustainable Metrics Definition and Evaluation for Green Manufacturing in Material Removal Processes. Materials. 13(2):1-21. https://doi.org/10.3390/ma13020373 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ma13020373 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1996-1944 es_ES
dc.identifier.pmid 31947526 es_ES
dc.identifier.pmcid PMC7013728 es_ES
dc.relation.pasarela S\400688 es_ES
dc.contributor.funder Fundación Carolina es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Escuela Politécnica Nacional, Ecuador es_ES
dc.description.references Brundtland, G. H. (1987). Our Common Future—Call for Action. Environmental Conservation, 14(4), 291-294. doi:10.1017/s0376892900016805 es_ES
dc.description.references Berke, P. R., & Conroy, M. M. (2000). Are We Planning for Sustainable Development? Journal of the American Planning Association, 66(1), 21-33. doi:10.1080/01944360008976081 es_ES
dc.description.references De Ron, A. J. (1998). Sustainable production: The ultimate result of a continuous improvement. International Journal of Production Economics, 56-57, 99-110. doi:10.1016/s0925-5273(98)00005-x es_ES
dc.description.references Aarseth, W., Ahola, T., Aaltonen, K., Økland, A., & Andersen, B. (2017). Project sustainability strategies: A systematic literature review. International Journal of Project Management, 35(6), 1071-1083. doi:10.1016/j.ijproman.2016.11.006 es_ES
dc.description.references Jansen, L. (2003). The challenge of sustainable development. Journal of Cleaner Production, 11(3), 231-245. doi:10.1016/s0959-6526(02)00073-2 es_ES
dc.description.references Vieira, L. C., & Amaral, F. G. (2016). Barriers and strategies applying Cleaner Production: a systematic review. Journal of Cleaner Production, 113, 5-16. doi:10.1016/j.jclepro.2015.11.034 es_ES
dc.description.references Rusman, E., van Bruggen, J., Sloep, P., & Koper, R. (2010). Fostering trust in virtual project teams: Towards a design framework grounded in a TrustWorthiness ANtecedents (TWAN) schema. International Journal of Human-Computer Studies, 68(11), 834-850. doi:10.1016/j.ijhcs.2010.07.003 es_ES
dc.description.references Elkington, J. (1994). Towards the Sustainable Corporation: Win-Win-Win Business Strategies for Sustainable Development. California Management Review, 36(2), 90-100. doi:10.2307/41165746 es_ES
dc.description.references Zackrisson, M., Kurdve, M., Shahbazi, S., Wiktorsson, M., Winroth, M., Landström, A., … Myrelid, A. (2017). Sustainability Performance Indicators at Shop Floor Level in Large Manufacturing Companies. Procedia CIRP, 61, 457-462. doi:10.1016/j.procir.2016.11.199 es_ES
dc.description.references Shuaib, M., Seevers, D., Zhang, X., Badurdeen, F., Rouch, K. E., & Jawahir, I. S. (2014). Product Sustainability Index (ProdSI). Journal of Industrial Ecology, 18(4), 491-507. doi:10.1111/jiec.12179 es_ES
dc.description.references Jayal, A. D., Badurdeen, F., Dillon, O. W., & Jawahir, I. S. (2010). Sustainable manufacturing: Modeling and optimization challenges at the product, process and system levels. CIRP Journal of Manufacturing Science and Technology, 2(3), 144-152. doi:10.1016/j.cirpj.2010.03.006 es_ES
dc.description.references Singh, S., Olugu, E. U., & Musa, S. N. (2016). Development of Sustainable Manufacturing Performance Evaluation Expert System for Small and Medium Enterprises. Procedia CIRP, 40, 608-613. doi:10.1016/j.procir.2016.01.142 es_ES
dc.description.references Rajurkar, K. P., Hadidi, H., Pariti, J., & Reddy, G. C. (2017). Review of Sustainability Issues in Non-Traditional Machining Processes. Procedia Manufacturing, 7, 714-720. doi:10.1016/j.promfg.2016.12.106 es_ES
dc.description.references Peralta Álvarez, M. E., Marcos Bárcena, M., & Aguayo González, F. (2017). On the sustainability of machining processes. Proposal for a unified framework through the triple bottom-line from an understanding review. Journal of Cleaner Production, 142, 3890-3904. doi:10.1016/j.jclepro.2016.10.071 es_ES
dc.description.references Bhanot, N., Rao, P. V., & Deshmukh, S. G. (2017). An integrated approach for analysing the enablers and barriers of sustainable manufacturing. Journal of Cleaner Production, 142, 4412-4439. doi:10.1016/j.jclepro.2016.11.123 es_ES
dc.description.references Eastwood, M. D., & Haapala, K. R. (2015). A unit process model based methodology to assist product sustainability assessment during design for manufacturing. Journal of Cleaner Production, 108, 54-64. doi:10.1016/j.jclepro.2015.08.105 es_ES
dc.description.references Garretson, I. C., Mani, M., Leong, S., Lyons, K. W., & Haapala, K. R. (2016). Terminology to support manufacturing process characterization and assessment for sustainable production. Journal of Cleaner Production, 139, 986-1000. doi:10.1016/j.jclepro.2016.08.103 es_ES
dc.description.references Helleno, A. L., de Moraes, A. J. I., & Simon, A. T. (2017). Integrating sustainability indicators and Lean Manufacturing to assess manufacturing processes: Application case studies in Brazilian industry. Journal of Cleaner Production, 153, 405-416. doi:10.1016/j.jclepro.2016.12.072 es_ES
dc.description.references Kluczek, A. (2017). An Overall Multi-criteria Approach to Sustainability Assessment of Manufacturing Processes. Procedia Manufacturing, 8, 136-143. doi:10.1016/j.promfg.2017.02.016 es_ES
dc.description.references Latif, H. H., Gopalakrishnan, B., Nimbarte, A., & Currie, K. (2017). Sustainability index development for manufacturing industry. Sustainable Energy Technologies and Assessments, 24, 82-95. doi:10.1016/j.seta.2017.01.010 es_ES
dc.description.references Moldavska, A., & Welo, T. (2017). The concept of sustainable manufacturing and its definitions: A content-analysis based literature review. Journal of Cleaner Production, 166, 744-755. doi:10.1016/j.jclepro.2017.08.006 es_ES
dc.description.references Winroth, M., Almström, P., & Andersson, C. (2016). Sustainable production indicators at factory level. Journal of Manufacturing Technology Management, 27(6), 842-873. doi:10.1108/jmtm-04-2016-0054 es_ES
dc.description.references Linke, B., Das, J., Lam, M., & Ly, C. (2014). Sustainability Indicators for Finishing Operations based on Process Performance and Part Quality. Procedia CIRP, 14, 564-569. doi:10.1016/j.procir.2014.03.017 es_ES
dc.description.references Vila, C., Ayabaca, C., Díaz-Campoverde, C., & Calle, O. (2019). Sustainability Analysis of AISI 1018 Turning Operations under Surface Integrity Criteria. Sustainability, 11(17), 4786. doi:10.3390/su11174786 es_ES
dc.description.references Bhanot, N., Rao, P. V., & Deshmukh, S. G. (2016). An Assessment of Sustainability for Turning Process in an Automobile Firm. Procedia CIRP, 48, 538-543. doi:10.1016/j.procir.2016.03.024 es_ES
dc.description.references Bhanot, N., Rao, P. V., & Deshmukh, S. G. (2015). Sustainable Manufacturing: An Interaction Analysis for Machining Parameters using Graph Theory. Procedia - Social and Behavioral Sciences, 189, 57-63. doi:10.1016/j.sbspro.2015.03.192 es_ES
dc.description.references Gupta, M. K., Sood, P. K., Singh, G., & Sharma, V. S. (2017). Sustainable machining of aerospace material – Ti (grade-2) alloy: Modeling and optimization. Journal of Cleaner Production, 147, 614-627. doi:10.1016/j.jclepro.2017.01.133 es_ES
dc.description.references Hegab, H. A., Darras, B., & Kishawy, H. A. (2018). Towards sustainability assessment of machining processes. Journal of Cleaner Production, 170, 694-703. doi:10.1016/j.jclepro.2017.09.197 es_ES
dc.description.references Kadam, G. S., & Pawade, R. S. (2017). Surface integrity and sustainability assessment in high-speed machining of Inconel 718 – An eco-friendly green approach. Journal of Cleaner Production, 147, 273-283. doi:10.1016/j.jclepro.2017.01.104 es_ES
dc.description.references Benedicto, E., Carou, D., & Rubio, E. M. (2017). Technical, Economic and Environmental Review of the Lubrication/Cooling Systems Used in Machining Processes. Procedia Engineering, 184, 99-116. doi:10.1016/j.proeng.2017.04.075 es_ES
dc.description.references Zhao, G. Y., Liu, Z. Y., He, Y., Cao, H. J., & Guo, Y. B. (2017). Energy consumption in machining: Classification, prediction, and reduction strategy. Energy, 133, 142-157. doi:10.1016/j.energy.2017.05.110 es_ES
dc.description.references Abbas, A. T., Benyahia, F., El Rayes, M. M., Pruncu, C., Taha, M. A., & Hegab, H. (2019). Towards Optimization of Machining Performance and Sustainability Aspects when Turning AISI 1045 Steel under Different Cooling and Lubrication Strategies. Materials, 12(18), 3023. doi:10.3390/ma12183023 es_ES
dc.description.references Ali, R., Mia, M., Khan, A., Chen, W., Gupta, M., & Pruncu, C. (2019). Multi-Response Optimization of Face Milling Performance Considering Tool Path Strategies in Machining of Al-2024. Materials, 12(7), 1013. doi:10.3390/ma12071013 es_ES
dc.description.references Li, Y., Zheng, G., Cheng, X., Yang, X., Xu, R., & Zhang, H. (2019). Cutting Performance Evaluation of the Coated Tools in High-Speed Milling of AISI 4340 Steel. Materials, 12(19), 3266. doi:10.3390/ma12193266 es_ES
dc.description.references Gupta, M., Pruncu, C., Mia, M., Singh, G., Singh, S., Prakash, C., … Gill, H. (2018). Machinability Investigations of Inconel-800 Super Alloy under Sustainable Cooling Conditions. Materials, 11(11), 2088. doi:10.3390/ma11112088 es_ES
dc.description.references Gamage, J. R., DeSilva, A. K. M., Chantzis, D., & Antar, M. (2017). Sustainable machining: Process energy optimisation of wire electrodischarge machining of Inconel and titanium superalloys. Journal of Cleaner Production, 164, 642-651. doi:10.1016/j.jclepro.2017.06.186 es_ES
dc.description.references Gunda, R. K., Reddy, N. S. K., & Kishawy, H. A. (2016). A Novel Technique to Achieve Sustainable Machining System. Procedia CIRP, 40, 30-34. doi:10.1016/j.procir.2016.01.045 es_ES
dc.description.references Lu, T., & Jawahir, I. S. (2015). Metrics-based Sustainability Evaluation of Cryogenic Machining. Procedia CIRP, 29, 520-525. doi:10.1016/j.procir.2015.02.067 es_ES
dc.description.references Pusavec, F., Deshpande, A., Yang, S., M’Saoubi, R., Kopac, J., Dillon, O. W., & Jawahir, I. S. (2014). Sustainable machining of high temperature Nickel alloy – Inconel 718: part 1 – predictive performance models. Journal of Cleaner Production, 81, 255-269. doi:10.1016/j.jclepro.2014.06.040 es_ES
dc.description.references Goindi, G. S., & Sarkar, P. (2017). Dry machining: A step towards sustainable machining – Challenges and future directions. Journal of Cleaner Production, 165, 1557-1571. doi:10.1016/j.jclepro.2017.07.235 es_ES
dc.description.references Shin, S.-J., Woo, J., & Rachuri, S. (2017). Energy efficiency of milling machining: Component modeling and online optimization of cutting parameters. Journal of Cleaner Production, 161, 12-29. doi:10.1016/j.jclepro.2017.05.013 es_ES
dc.description.references Um, J., Gontarz, A., & Stroud, I. (2015). Developing Energy Estimation Model Based on Sustainability KPI of Machine Tools. Procedia CIRP, 26, 217-222. doi:10.1016/j.procir.2015.03.002 es_ES
dc.description.references Zhang, T., Owodunni, O., & Gao, J. (2015). Scenarios in Multi-objective Optimisation of Process Parameters for Sustainable Machining. Procedia CIRP, 26, 373-378. doi:10.1016/j.procir.2014.07.186 es_ES
dc.description.references Gao, R., Wang, L., Teti, R., Dornfeld, D., Kumara, S., Mori, M., & Helu, M. (2015). Cloud-enabled prognosis for manufacturing. CIRP Annals, 64(2), 749-772. doi:10.1016/j.cirp.2015.05.011 es_ES
dc.description.references Menzel, C., & Mayer, R. J. (s. f.). The IDEF Family of Languages. International Handbooks on Information Systems, 215-249. doi:10.1007/3-540-26661-5_10 es_ES
dc.description.references Dornfeld, D. A. (2014). Moving towards green and sustainable manufacturing. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(1), 63-66. doi:10.1007/s40684-014-0010-7 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem