Mostrar el registro sencillo del ítem
dc.contributor.author | Zholnin, Aleksander | es_ES |
dc.contributor.author | Klyatskina, Elizaveta | es_ES |
dc.contributor.author | Grigoryev, E.G. | es_ES |
dc.contributor.author | Salvador Moya, Mª Dolores | es_ES |
dc.contributor.author | Misochenko, A.A. | es_ES |
dc.contributor.author | Dobrokhotov, P.L. | es_ES |
dc.contributor.author | Isaenkova, M.G. | es_ES |
dc.contributor.author | Sinaysky, M.A. | es_ES |
dc.contributor.author | Stolyarov, Vladimir V. | es_ES |
dc.date.accessioned | 2020-06-06T03:33:10Z | |
dc.date.available | 2020-06-06T03:33:10Z | |
dc.date.issued | 2018-05 | es_ES |
dc.identifier.issn | 0020-1685 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/145561 | |
dc.description.abstract | [EN] In the present work, the properties of Al2O3 nanocomposite prepared via spark-plasma sintering and reinforced with 0.5-2 wt % graphene are studied. Samples with different graphene contents are subjected to measurements of density, microhardness, coefficient of friction of composite-ruby, and frictional wear rate of composite. The fracture and wear track surface are inspected via fractography, and the composite as a whole is examined via X-ray diffraction. The graphene additive is established to increase the microhardness and to decrease the frictional wear rate by two orders of magnitude on account of absence of flaking of grains. | es_ES |
dc.description.sponsorship | This work was supported by the Competitiveness Program of National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Russian Ministry of Education and Science no. 02. A 03.21.0005 and by the Russian Science Foundation (project no. 16-9-10213 from May 6, 2016). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Pleiades Publishing | es_ES |
dc.relation.ispartof | Inorganic Materials | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nanopowders | es_ES |
dc.subject | Aluminum oxide | es_ES |
dc.subject | Graphene | es_ES |
dc.subject | Spark-plasma sintering | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | Spark-plasma sintering of Al2O3-graphene nanocomposite | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1134/S2075113318030334 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/RFBR//6-9-10213/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NRNU MEPhI//no. 02. A 03.21.0005/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Ministry of Education and Science of the Russian Federation//no. 02. A 03.21.0005/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2014%2F046/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2015-67586-C3-3-R/ES/NUEVAS BARRERAS TERMICAS CON FUNCIONALIDAD AUTOSELLANTE OBTENIDAS MEDIANTE PROYECCION POR PLASMA: CARACTERIZACION/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Zholnin, A.; Klyatskina, E.; Grigoryev, E.; Salvador Moya, MD.; Misochenko, A.; Dobrokhotov, P.; Isaenkova, M.... (2018). Spark-plasma sintering of Al2O3-graphene nanocomposite. Inorganic Materials. 9(3):498-503. https://doi.org/10.1134/S2075113318030334 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1134/S2075113318030334 | es_ES |
dc.description.upvformatpinicio | 498 | es_ES |
dc.description.upvformatpfin | 503 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\378514 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Russian Science Foundation | es_ES |
dc.contributor.funder | National Research Nuclear University MEPhI, Rusia | es_ES |
dc.contributor.funder | Ministry of Education and Science of the Russian Federation | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Novoselov, K.S., Geim, A.K., Morozov, S.V., et al., Two-dimensional gas of massless Dirac fermions in grapheme, Nature, 2005, vol. 438, pp. 197–200. | es_ES |
dc.description.references | Stankovich, S., Dikin, D.A., Dommett, G.H.B., et al., Graphene-based composite material, Nature, 2006, vol. 442, pp. 282–286. | es_ES |
dc.description.references | Soldano, C., Mahmood, A., and Dujardin, E., Production, properties, and potential of grapheme, Carbon, 2010, vol. 48, pp. 2127–2150. | es_ES |
dc.description.references | Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C.N., Superior thermal conductivity of single-layer grapheme, Nano Lett., 2008, vol. 3, pp. 902–907. | es_ES |
dc.description.references | Frank, I.W., Tanenbaum, D.M., Vander Zande, A.M., and McEuen, P.L., Mechanical properties of suspended graphene sheets, J. Vac. Sci. Technol., 2007, vol. 6, pp. 2558–2561. | es_ES |
dc.description.references | Zholnin, A.G., Kovaleva, I.V., Medvedev, P.N., Grigoriev, E.G., Olevskii, E.A., Isaenkova, M.G., and Dobrokhotov, P.L., Peculiarities of a free sintering of nanopowders of delta-and alpha aluminum oxide under magnetic-pulse pressing, Fiz. Khim. Obrab. Mater., 2016, no. 1, pp. 53–63. | es_ES |
dc.description.references | Zholnin, A.G., Kovaleva, I.V., Rytenko, V.Yu., Pakhilo-Dar’yal, I.O., Litvinova, I.S., Gol’tsov, V.Yu., Grigoriev, E.G., and Olevskii, E.A., Effect of the particle size of aluminum oxide powder on the spark-plasma sintering, Fiz. Khim. Obrab. Mater., 2016, no. 2, pp. 71–77. | es_ES |
dc.description.references | Taylor, A., X-Ray Metallography, New York: Wiley, 1961. | es_ES |
dc.description.references | Rusakov, A.A., Rentgenografiya metallov (X-Ray Metallography), Moscow: Atomizdat, 1977. | es_ES |
dc.description.references | He, T., Li, J., Wang, L., Zhu, J., and Jiang, W., Preparation and consolidation of alumina/graphene composite powders, Mater. Trans., 2009, vol. 50, no. 4, pp. 749–751. | es_ES |
dc.description.references | Fan, Y., Wang, L., Li, J., Li, J., Sun, S., Chen, F., Chen, L., and Jiang, W., Preparation and electrical properties of graphene nanosheet/Al2O3 composites, Carbon, 2010, vol. 48, pp. 1743–1749. | es_ES |
dc.description.references | Centeno, A., Rocha, V.G., Alonso, B., Fernández, A., Gutierrez-Gonzalez, C.F., Torrecillas, R., and Zurutuza, A., Graphene for tough and electro-conductive alumina ceramics, J. Eur. Ceram. Soc., 2013, vol. 33, pp. 3201–3210. | es_ES |
dc.description.references | Fan, Y., Jiang, W., and Kawasaki, A., Highly conductive few layer graphene/Al2O3 nanocomposites with tunable charge carrier type, Adv. Funct. Mater., 2012, vol. 22, pp. 3882–3889. | es_ES |