Mostrar el registro sencillo del ítem
dc.contributor.author | Carpio-Garay, Edison Fernando![]() |
es_ES |
dc.contributor.author | Gómez García, Juan Francisco![]() |
es_ES |
dc.contributor.author | Sebastian, Rafael![]() |
es_ES |
dc.contributor.author | López-Pérez, Alejandro Daniel![]() |
es_ES |
dc.contributor.author | Castellanos, Eduardo![]() |
es_ES |
dc.contributor.author | Almendral, Jesús![]() |
es_ES |
dc.contributor.author | Ferrero De Loma-Osorio, José María![]() |
es_ES |
dc.contributor.author | Trenor Gomis, Beatriz Ana![]() |
es_ES |
dc.date.accessioned | 2020-06-06T03:33:15Z | |
dc.date.available | 2020-06-06T03:33:15Z | |
dc.date.issued | 2019-02-11 | es_ES |
dc.identifier.issn | 1664-042X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/145564 | |
dc.description.abstract | [EN] Patients suffering from heart failure and left bundle branch block show electrical ventricular dyssynchrony causing an abnormal blood pumping. Cardiac resynchronization therapy (CRT) is recommended for these patients. Patients with positive therapy response normally present QRS shortening and an increased left ventricle (LV) ejection fraction. However, around one third do not respond favorably. Therefore, optimal location of pacing leads, timing delays between leads and/or choosing related biomarkers is crucial to achieve the best possible degree of ventricular synchrony during CRT application. In this study, computational modeling is used to predict the optimal location and delay of pacing leads to improve CRT response. We use a 3D electrophysiological computational model of the heart and torso to get insight into the changes in the activation patterns obtained when the heart is paced from different regions and for different atrioventricular and interventricular delays. The model represents a heart with left bundle branch block and heart failure, and allows a detailed and accurate analysis of the electrical changes observed simultaneously in the myocardium and in the QRS complex computed in the precordial leads. Computational simulations were performed using a modified version of the O'Hara et al. action potential model, the most recent mathematical model developed for human ventricular electrophysiology. The optimal location for the pacing leads was determined by QRS maximal reduction. Additionally, the influence of Purkinje system on CRT response was assessed and correlation analysis between several parameters of the QRS was made. Simulation results showed that the right ventricle (RV) upper septum near the outflow tract is an alternative location to the RV apical lead. Furthermore, LV endocardial pacing provided better results as compared to epicardial stimulation. Finally, the time to reach the 90% of the QRS area was a good predictor of the instant at which 90% of the ventricular tissue was activated. Thus, the time to reach the 90% of the QRS area is suggested as an additional index to assess CRT effectiveness to improve biventricular synchrony. | es_ES |
dc.description.sponsorship | This work was supported by the Secretaría de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT) of Ecuador CIBAE-023-2014, the Plan Estatal de Investigación Científica y Técnica y de Innovación 2013 2016 from the Ministerio de Economía, Industria y Competitividad of Spain and Fondo Europeo de Desarrollo Regional (FEDER) DPI2016-75799-R (AEI/FEDER, UE), and by Dirección General de Política Científica de la Generalitat Valenciana (PROMETEU 2016/088). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media SA | es_ES |
dc.relation.ispartof | Frontiers in Physiology | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Cardiac resynchronization therapy | es_ES |
dc.subject | Heart failure | es_ES |
dc.subject | LBBB | es_ES |
dc.subject | Computational modeling | es_ES |
dc.subject | QRS duration | es_ES |
dc.subject | Optimization | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Optimization of Lead Placement in the Right Ventricle During Cardiac Resynchronization Therapy. A Simulation Study | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/fphys.2019.00074 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/SENESCYT//CIBAE-023-2014/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F088/ES/MODELOS COMPUTACIONALES PERSONALIZADOS MULTI-ESCALA PARA LA OPTIMIZACION DEL DIAGNOSTICO Y TRATAMIENTO DE ARRITMIAS CARDIACAS (PERSONALISED DIGITAL HEART)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2016-75799-R/ES/TECNOLOGIAS COMPUTACIONALES PARA LA OPTIMIZACION DE TERAPIAS PERSONALIZADAS DE PATOLOGIAS AURICULARES Y VENTRICULARES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Carpio-Garay, EF.; Gómez García, JF.; Sebastian, R.; López-Pérez, AD.; Castellanos, E.; Almendral, J.; Ferrero De Loma-Osorio, JM.... (2019). Optimization of Lead Placement in the Right Ventricle During Cardiac Resynchronization Therapy. A Simulation Study. Frontiers in Physiology. 10:1-17. https://doi.org/10.3389/fphys.2019.00074 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3389/fphys.2019.00074 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.identifier.pmid | 30804805 | es_ES |
dc.identifier.pmcid | PMC6378298 | es_ES |
dc.relation.pasarela | S\380775 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Secretaría de Educación Superior, Ciencia, Tecnología e Innovación, Ecuador | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Abraham, W. T., Fisher, W. G., Smith, A. L., Delurgio, D. B., Leon, A. R., Loh, E., … Messenger, J. (2002). Cardiac Resynchronization in Chronic Heart Failure. New England Journal of Medicine, 346(24), 1845-1853. doi:10.1056/nejmoa013168 | es_ES |
dc.description.references | Abraham, W. T., Gras, D., Yu, C. M., Guzzo, L., & Gupta, M. S. (2010). Rationale and design of a randomized clinical trial to assess the safety and efficacy of frequent optimization of cardiac resynchronization therapy: The Frequent Optimization Study Using the QuickOpt Method (FREEDOM) trial. American Heart Journal, 159(6), 944-948.e1. doi:10.1016/j.ahj.2010.02.034 | es_ES |
dc.description.references | Ai, X., & Pogwizd, S. M. (2005). Connexin 43 Downregulation and Dephosphorylation in Nonischemic Heart Failure Is Associated With Enhanced Colocalized Protein Phosphatase Type 2A. Circulation Research, 96(1), 54-63. doi:10.1161/01.res.0000152325.07495.5a | es_ES |
dc.description.references | Akar, F. G., Nass, R. D., Hahn, S., Cingolani, E., Shah, M., Hesketh, G. G., … Tomaselli, G. F. (2007). Dynamic changes in conduction velocity and gap junction properties during development of pacing-induced heart failure. American Journal of Physiology-Heart and Circulatory Physiology, 293(2), H1223-H1230. doi:10.1152/ajpheart.00079.2007 | es_ES |
dc.description.references | ARBELO, E., TOLOSANA, J. M., TRUCCO, E., PENELA, D., BORRÀS, R., DOLTRA, A., … MONT, L. (2013). Fusion-Optimized Intervals (FOI): A New Method to Achieve the Narrowest QRS for Optimization of the AV and VV Intervals in Patients Undergoing Cardiac Resynchronization Therapy. Journal of Cardiovascular Electrophysiology, 25(3), 283-292. doi:10.1111/jce.12322 | es_ES |
dc.description.references | Auricchio, A., Fantoni, C., Regoli, F., Carbucicchio, C., Goette, A., Geller, C., … Klein, H. (2004). Characterization of Left Ventricular Activation in Patients With Heart Failure and Left Bundle-Branch Block. Circulation, 109(9), 1133-1139. doi:10.1161/01.cir.0000118502.91105.f6 | es_ES |
dc.description.references | Auricchio, A., Klein, H., Tockman, B., Sack, S., Stellbrink, C., Neuzner, J., … Spinelli, J. (1999). Transvenous biventricular pacing for heart failure: can the obstacles be overcome? The American Journal of Cardiology, 83(5), 136-142. doi:10.1016/s0002-9149(98)01015-7 | es_ES |
dc.description.references | Barber, F., García-Fernández, I., Lozano, M., & Sebastian, R. (2018). Automatic estimation of Purkinje-Myocardial junction hot-spots from noisy endocardial samples: A simulation study. International Journal for Numerical Methods in Biomedical Engineering, 34(7), e2988. doi:10.1002/cnm.2988 | es_ES |
dc.description.references | Barold, S. S., Ilercil, A., & Herweg, B. (2008). Echocardiographic optimization of the atrioventricular and interventricular intervals during cardiac resynchronization. Europace, 10(Supplement 3), iii88-iii95. doi:10.1093/europace/eun220 | es_ES |
dc.description.references | Bertaglia, E., Migliore, F., Baritussio, A., De Simone, A., Reggiani, A., Pecora, D., … Stabile, G. (2017). Stricter criteria for left bundle branch block diagnosis do not improve response to CRT. Pacing and Clinical Electrophysiology, 40(7), 850-856. doi:10.1111/pace.13104 | es_ES |
dc.description.references | Bertini, M., Ziacchi, M., Biffi, M., Martignani, C., Saporito, D., Valzania, C., … Boriani, G. (2008). Interventricular Delay Interval Optimization in Cardiac Resynchronization Therapy Guided by Echocardiography Versus Guided by Electrocardiographic QRS Interval Width. The American Journal of Cardiology, 102(10), 1373-1377. doi:10.1016/j.amjcard.2008.07.015 | es_ES |
dc.description.references | BLEEKER, G. B., SCHALIJ, M. J., MOLHOEK, S. G., VERWEY, H. F., HOLMAN, E. R., BOERSMA, E., … BAX, J. J. (2004). Relationship Between QRS Duration and Left Ventricular Dyssynchrony in Patients with End-Stage Heart Failure. Journal of Cardiovascular Electrophysiology, 15(5), 544-549. doi:10.1046/j.1540-8167.2004.03604.x | es_ES |
dc.description.references | Bonakdar, H. R., Jorat, M. V., Fazelifar, A. F., Alizadeh, A., Givtaj, N., Sameie, N., … Haghjoo, M. (2009). Prediction of response to cardiac resynchronization therapy using simple electrocardiographic and echocardiographic tools. Europace, 11(10), 1330-1337. doi:10.1093/europace/eup258 | es_ES |
dc.description.references | Bordachar, P., Derval, N., Ploux, S., Garrigue, S., Ritter, P., Haissaguerre, M., & Jaïs, P. (2010). Left Ventricular Endocardial Stimulation for Severe Heart Failure. Journal of the American College of Cardiology, 56(10), 747-753. doi:10.1016/j.jacc.2010.04.038 | es_ES |
dc.description.references | Boukens, B. J., Rivaud, M. R., Rentschler, S., & Coronel, R. (2014). Misinterpretation of the mouse ECG: ‘musing the waves ofMus musculus’. The Journal of Physiology, 592(21), 4613-4626. doi:10.1113/jphysiol.2014.279380 | es_ES |
dc.description.references | Bradley, C. P., Pullan, A. J., & Hunter, P. J. (1997). Geometric modeling of the human torso using cubic hermite elements. Annals of Biomedical Engineering, 25(1), 96-111. doi:10.1007/bf02738542 | es_ES |
dc.description.references | 2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. (2013). European Heart Journal, 34(29), 2281-2329. doi:10.1093/eurheartj/eht150 | es_ES |
dc.description.references | Brugada, J., Brachmann, J., Delnoy, P. P., Padeletti, L., Reynolds, D., Ritter, P., … Singh, J. P. (2014). Automatic Optimization of Cardiac Resynchronization Therapy Using SonR—Rationale and Design of the Clinical Trial of the SonRtip Lead and Automatic AV-VV Optimization Algorithm in the Paradym RF SonR CRT-D (RESPOND CRT) Trial. American Heart Journal, 167(4), 429-436. doi:10.1016/j.ahj.2013.12.007 | es_ES |
dc.description.references | Cano, O., Osca, J., Sancho-Tello, M.-J., Sánchez, J. M., Ortiz, V., Castro, J. E., … Olagüe, J. (2010). Comparison of Effectiveness of Right Ventricular Septal Pacing Versus Right Ventricular Apical Pacing. The American Journal of Cardiology, 105(10), 1426-1432. doi:10.1016/j.amjcard.2010.01.004 | es_ES |
dc.description.references | Cazeau, S., Leclercq, C., Lavergne, T., Walker, S., Varma, C., Linde, C., … Daubert, J.-C. (2001). Effects of Multisite Biventricular Pacing in Patients with Heart Failure and Intraventricular Conduction Delay. New England Journal of Medicine, 344(12), 873-880. doi:10.1056/nejm200103223441202 | es_ES |
dc.description.references | Chung, E. S., Leon, A. R., Tavazzi, L., Sun, J.-P., Nihoyannopoulos, P., Merlino, J., … Murillo, J. (2008). Results of the Predictors of Response to CRT (PROSPECT) Trial. Circulation, 117(20), 2608-2616. doi:10.1161/circulationaha.107.743120 | es_ES |
dc.description.references | ClelandJ. G. F. DaubertJ.-C. ErdmannE. FreemantleN. GrasD. KappenbergerL. The Effect of Cardiac Resynchronization on Morbidity and Mortality in Heart Failure.2005 | es_ES |
dc.description.references | Coppola, G., Ciaramitaro, G., Stabile, G., DOnofrio, A., Palmisano, P., Carità, P., … Corrado, E. (2016). Magnitude of QRS duration reduction after biventricular pacing identifies responders to cardiac resynchronization therapy. International Journal of Cardiology, 221, 450-455. doi:10.1016/j.ijcard.2016.06.203 | es_ES |
dc.description.references | Coronel, R., Wilders, R., Verkerk, A. O., Wiegerinck, R. F., Benoist, D., & Bernus, O. (2013). Electrophysiological changes in heart failure and their implications for arrhythmogenesis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1832(12), 2432-2441. doi:10.1016/j.bbadis.2013.04.002 | es_ES |
dc.description.references | Crozier, A., Blazevic, B., Lamata, P., Plank, G., Ginks, M., Duckett, S., … Niederer, S. A. (2016). The relative role of patient physiology and device optimisation in cardiac resynchronisation therapy: A computational modelling study. Journal of Molecular and Cellular Cardiology, 96, 93-100. doi:10.1016/j.yjmcc.2015.10.026 | es_ES |
dc.description.references | Da Costa, A., Gabriel, L., Romeyer-Bouchard, C., Géraldine, B., Gate-Martinet, A., Laurence, B., … Isaaz, K. (2013). Focus on right ventricular outflow tract septal pacing. Archives of Cardiovascular Diseases, 106(6-7), 394-403. doi:10.1016/j.acvd.2012.08.005 | es_ES |
dc.description.references | De Pooter, J., El Haddad, M., Timmers, L., Van Heuverswyn, F., Jordaens, L., Duytschaever, M., & Stroobandt, R. (2015). Different Methods to Measure QRS Duration in CRT Patients: Impact on the Predictive Value of QRS Duration Parameters. Annals of Noninvasive Electrocardiology, 21(3), 305-315. doi:10.1111/anec.12313 | es_ES |
dc.description.references | Derval, N., Steendijk, P., Gula, L. J., Deplagne, A., Laborderie, J., Sacher, F., … Jaïs, P. (2010). Optimizing Hemodynamics in Heart Failure Patients by Systematic Screening of Left Ventricular Pacing Sites. Journal of the American College of Cardiology, 55(6), 566-575. doi:10.1016/j.jacc.2009.08.045 | es_ES |
dc.description.references | DeskR. WilliamsL. HealthK. Characteristics and Distribution of M Cells in Arterially.1998 | es_ES |
dc.description.references | Dou, J., Xia, L., Deng, D., Zang, Y., Shou, G., Bustos, C., … Crozier, S. (2012). A Study of Mechanical Optimization Strategy for Cardiac Resynchronization Therapy Based on an Electromechanical Model. Computational and Mathematical Methods in Medicine, 2012, 1-13. doi:10.1155/2012/948781 | es_ES |
dc.description.references | DURRER, D., VAN DAM, R. T., FREUD, G. E., JANSE, M. J., MEIJLER, F. L., & ARZBAECHER, R. C. (1970). Total Excitation of the Isolated Human Heart. Circulation, 41(6), 899-912. doi:10.1161/01.cir.41.6.899 | es_ES |
dc.description.references | Dutta, S., Mincholé, A., Quinn, T. A., & Rodriguez, B. (2017). Electrophysiological properties of computational human ventricular cell action potential models under acute ischemic conditions. Progress in Biophysics and Molecular Biology, 129, 40-52. doi:10.1016/j.pbiomolbio.2017.02.007 | es_ES |
dc.description.references | Elhakam Elzoghby, I. A., Attia, I., Azab, A. E., & Hammouda, M. (2017). Impact of Cardiac Resynchronization Therapy on Heart Failure Patients: Experience from One Center. Archives of Medicine, 09(04). doi:10.21767/1989-5216.1000232 | es_ES |
dc.description.references | Ferrer, A., Sebastián, R., Sánchez-Quintana, D., Rodríguez, J. F., Godoy, E. J., Martínez, L., & Saiz, J. (2015). Detailed Anatomical and Electrophysiological Models of Human Atria and Torso for the Simulation of Atrial Activation. PLOS ONE, 10(11), e0141573. doi:10.1371/journal.pone.0141573 | es_ES |
dc.description.references | FLEVARI, P., LEFTHERIOTIS, D., FOUNTOULAKI, K., PANOU, F., RIGOPOULOS, A. G., PARASKEVAIDIS, I., & KREMASTINOS, D. T. (2009). Long-Term Nonoutflow Septal Versus Apical Right Ventricular Pacing: Relation to Left Ventricular Dyssynchrony. Pacing and Clinical Electrophysiology, 32(3), 354-362. doi:10.1111/j.1540-8159.2008.02244.x | es_ES |
dc.description.references | GRAS, D., GUPTA, M. S., BOULOGNE, E., GUZZO, L., & ABRAHAM, W. T. (2009). Optimization of AV and VV Delays in the Real-World CRT Patient Population: An International Survey on Current Clinical Practice. Pacing and Clinical Electrophysiology, 32, S236-S239. doi:10.1111/j.1540-8159.2008.02294.x | es_ES |
dc.description.references | Greenbaum, R. A., Ho, S. Y., Gibson, D. G., Becker, A. E., & Anderson, R. H. (1981). Left ventricular fibre architecture in man. Heart, 45(3), 248-263. doi:10.1136/hrt.45.3.248 | es_ES |
dc.description.references | Guo, T., Li, R., Zhang, L., Luo, Z., Zhao, L., Yang, J., … Hua, B. (2015). Biventricular Pacing With Ventricular Fusion by Intrinsic Activation in Cardiac Resynchronization Therapy. International Heart Journal, 56(3), 293-297. doi:10.1536/ihj.14-260 | es_ES |
dc.description.references | Gurev, V., Constantino, J., Rice, J. J., & Trayanova, N. A. (2010). Distribution of Electromechanical Delay in the Heart: Insights from a Three-Dimensional Electromechanical Model. Biophysical Journal, 99(3), 745-754. doi:10.1016/j.bpj.2010.05.028 | es_ES |
dc.description.references | Heidenreich, E. A., Ferrero, J. M., Doblaré, M., & Rodríguez, J. F. (2010). Adaptive Macro Finite Elements for the Numerical Solution of Monodomain Equations in Cardiac Electrophysiology. Annals of Biomedical Engineering, 38(7), 2331-2345. doi:10.1007/s10439-010-9997-2 | es_ES |
dc.description.references | Huang, W., Su, L., Wu, S., Xu, L., Xiao, F., Zhou, X., & Ellenbogen, K. A. (2017). A Novel Pacing Strategy With Low and Stable Output: Pacing the Left Bundle Branch Immediately Beyond the Conduction Block. Canadian Journal of Cardiology, 33(12), 1736.e1-1736.e3. doi:10.1016/j.cjca.2017.09.013 | es_ES |
dc.description.references | Keller, D. U. J., Weber, F. M., Seemann, G., & Dössel, O. (2010). Ranking the Influence of Tissue Conductivities on Forward-Calculated ECGs. IEEE Transactions on Biomedical Engineering, 57(7), 1568-1576. doi:10.1109/tbme.2010.2046485 | es_ES |
dc.description.references | Krum, H., Lemke, B., Birnie, D., Lee, K. L.-F., Aonuma, K., Starling, R. C., … Martin, D. (2012). A novel algorithm for individualized cardiac resynchronization therapy: Rationale and design of the adaptive cardiac resynchronization therapy trial. American Heart Journal, 163(5), 747-752.e1. doi:10.1016/j.ahj.2012.02.007 | es_ES |
dc.description.references | Leclercq, C., Sadoul, N., Mont, L., Defaye, P., Osca, J., Mouton, E., … Fernandez-Lozano, I. (2015). Comparison of right ventricular septal pacing and right ventricular apical pacing in patients receiving cardiac resynchronization therapy defibrillators: the SEPTAL CRT Study. European Heart Journal, 37(5), 473-483. doi:10.1093/eurheartj/ehv422 | es_ES |
dc.description.references | LEE, A. W. C., CROZIER, A., HYDE, E. R., LAMATA, P., TRUONG, M., SOHAL, M., … NIEDERER, S. (2017). Biophysical Modeling to Determine the Optimization of Left Ventricular Pacing Site and AV/VV Delays in the Acute and Chronic Phase of Cardiac Resynchronization Therapy. Journal of Cardiovascular Electrophysiology, 28(2), 208-215. doi:10.1111/jce.13134 | es_ES |
dc.description.references | Lee, A. W. C., Costa, C. M., Strocchi, M., Rinaldi, C. A., & Niederer, S. A. (2018). Computational Modeling for Cardiac Resynchronization Therapy. Journal of Cardiovascular Translational Research, 11(2), 92-108. doi:10.1007/s12265-017-9779-4 | es_ES |
dc.description.references | Lee, H., Park, J.-H., Seo, I., Park, S.-H., & Kim, S. (2014). Improved application of the electrophoretic tissue clearing technology, CLARITY, to intact solid organs including brain, pancreas, liver, kidney, lung, and intestine. BMC Developmental Biology, 14(1). doi:10.1186/s12861-014-0048-3 | es_ES |
dc.description.references | Linde, C., Ellenbogen, K., & McAlister, F. A. (2012). Cardiac resynchronization therapy (CRT): Clinical trials, guidelines, and target populations. Heart Rhythm, 9(8), S3-S13. doi:10.1016/j.hrthm.2012.04.026 | es_ES |
dc.description.references | Lopez-Perez, A., Sebastian, R., & Ferrero, J. M. (2015). Three-dimensional cardiac computational modelling: methods, features and applications. BioMedical Engineering OnLine, 14(1). doi:10.1186/s12938-015-0033-5 | es_ES |
dc.description.references | Mafi Rad, M., Blaauw, Y., Dinh, T., Pison, L., Crijns, H. J., Prinzen, F. W., & Vernooy, K. (2014). Different regions of latest electrical activation during left bundle-branch block and right ventricular pacing in cardiac resynchronization therapy patients determined by coronary venous electro-anatomic mapping. European Journal of Heart Failure, 16(11), 1214-1222. doi:10.1002/ejhf.178 | es_ES |
dc.description.references | Miri, R., Graf, I. M., & Dossel, O. (2009). Efficiency of Timing Delays and Electrode Positions in Optimization of Biventricular Pacing: A Simulation Study. IEEE Transactions on Biomedical Engineering, 56(11), 2573-2582. doi:10.1109/tbme.2009.2027692 | es_ES |
dc.description.references | Miri, R., Reumann, M., Farina, D., & Dössel, O. (2009). Concurrent optimization of timing delays and electrode positioning in biventricular pacing based on a computer heart model assuming 17 left ventricular segments. Biomedizinische Technik/Biomedical Engineering, 54(2), 55-65. doi:10.1515/bmt.2009.013 | es_ES |
dc.description.references | Miri, R., Reumann, M., Keller, D. U. J., Farina, D., & Dossel, O. (2008). Comparison of the electrophysiologically based optimization methods with different pacing parameters in patient undergoing resynchronization treatment. 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. doi:10.1109/iembs.2008.4649513 | es_ES |
dc.description.references | MOLHOEK, S. G., BAX, J. J., BOERSMA, E., ERVEN, L. V., BOOTSMA, M., STEENDIJK, P., … SCHALIJ, M. J. (2004). QRS Duration and Shortening to Predict Clinical Response to Cardiac Resynchronization Therapy in Patients with End‐Stage Heart Failure. Pacing and Clinical Electrophysiology, 27(3), 308-313. doi:10.1111/j.1540-8159.2004.00433.x | es_ES |
dc.description.references | Mora, M. T., Ferrero, J. M., Romero, L., & Trenor, B. (2017). Sensitivity analysis revealing the effect of modulating ionic mechanisms on calcium dynamics in simulated human heart failure. PLOS ONE, 12(11), e0187739. doi:10.1371/journal.pone.0187739 | es_ES |
dc.description.references | MUTO, C., OTTAVIANO, L., CANCIELLO, M., CARRERAS, G., CALVANESE, R., ASCIONE, L., … TUCCILLO, B. (2007). Effect of Pacing the Right Ventricular Mid-Septum Tract in Patients with Permanent Atrial Fibrillation and Low Ejection Fraction. Journal of Cardiovascular Electrophysiology, 18(10), 1032-1036. doi:10.1111/j.1540-8167.2007.00914.x | es_ES |
dc.description.references | O’Hara, T., Virág, L., Varró, A., & Rudy, Y. (2011). Simulation of the Undiseased Human Cardiac Ventricular Action Potential: Model Formulation and Experimental Validation. PLoS Computational Biology, 7(5), e1002061. doi:10.1371/journal.pcbi.1002061 | es_ES |
dc.description.references | Passini, E., Mincholé, A., Coppini, R., Cerbai, E., Rodriguez, B., Severi, S., & Bueno-Orovio, A. (2016). Mechanisms of pro-arrhythmic abnormalities in ventricular repolarisation and anti-arrhythmic therapies in human hypertrophic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 96, 72-81. doi:10.1016/j.yjmcc.2015.09.003 | es_ES |
dc.description.references | Pitzalis, M. V., Iacoviello, M., Romito, R., Massari, F., Rizzon, B., Luzzi, G., … Rizzon, P. (2002). Cardiac resynchronization therapy tailored by echocardiographic evaluation of ventricular asynchrony. Journal of the American College of Cardiology, 40(9), 1615-1622. doi:10.1016/s0735-1097(02)02337-9 | es_ES |
dc.description.references | Pluijmert, M., Bovendeerd, P. H. M., Lumens, J., Vernooy, K., Prinzen, F. W., & Delhaas, T. (2016). New insights from a computational model on the relation between pacing site and CRT response. EP Europace, 18(suppl_4), iv94-iv103. doi:10.1093/europace/euw355 | es_ES |
dc.description.references | Potse, M., Dube, B., Richer, J., Vinet, A., & Gulrajani, R. M. (2006). A Comparison of Monodomain and Bidomain Reaction-Diffusion Models for Action Potential Propagation in the Human Heart. IEEE Transactions on Biomedical Engineering, 53(12), 2425-2435. doi:10.1109/tbme.2006.880875 | es_ES |
dc.description.references | Potse, M., Krause, D., Bacharova, L., Krause, R., Prinzen, F. W., & Auricchio, A. (2012). Similarities and differences between electrocardiogram signs of left bundle-branch block and left-ventricular uncoupling. Europace, 14(suppl 5), v33-v39. doi:10.1093/europace/eus272 | es_ES |
dc.description.references | Prassl, A. J., Kickinger, F., Ahammer, H., Grau, V., Schneider, J. E., Hofer, E., … Plank, G. (2009). Automatically Generated, Anatomically Accurate Meshes for Cardiac Electrophysiology Problems. IEEE Transactions on Biomedical Engineering, 56(5), 1318-1330. doi:10.1109/tbme.2009.2014243 | es_ES |
dc.description.references | PRINZEN, F. W., & PESCHAR, M. (2002). Relation Between the Pacing Induced Sequence of Activation and Left Ventricular Pump Function in Animals. Pacing and Clinical Electrophysiology, 25(4), 484-498. doi:10.1046/j.1460-9592.2002.00484.x | es_ES |
dc.description.references | Van Deursen, C., van Geldorp, I. E., Rademakers, L. M., van Hunnik, A., Kuiper, M., Klersy, C., … Prinzen, F. W. (2009). Left Ventricular Endocardial Pacing Improves Resynchronization Therapy in Canine Left Bundle-Branch Hearts. Circulation: Arrhythmia and Electrophysiology, 2(5), 580-587. doi:10.1161/circep.108.846022 | es_ES |
dc.description.references | Prinzen, F. W., Vernooy, K., Lumens, J., & Auricchio, A. (2017). Physiology of Cardiac Pacing and Resynchronization. Clinical Cardiac Pacing, Defibrillation and Resynchronization Therapy, 213-248. doi:10.1016/b978-0-323-37804-8.00007-9 | es_ES |
dc.description.references | Rickard, J., Karim, M., Baranowski, B., Cantillon, D., Spragg, D., Tang, W. H. W., … Varma, N. (2017). Effect of PR interval prolongation on long-term outcomes in patients with left bundle branch block vs non–left bundle branch block morphologies undergoing cardiac resynchronization therapy. Heart Rhythm, 14(10), 1523-1528. doi:10.1016/j.hrthm.2017.05.028 | es_ES |
dc.description.references | Romero, D., Sebastian, R., Bijnens, B. H., Zimmerman, V., Boyle, P. M., Vigmond, E. J., & Frangi, A. F. (2010). Effects of the Purkinje System and Cardiac Geometry on Biventricular Pacing: A Model Study. Annals of Biomedical Engineering, 38(4), 1388-1398. doi:10.1007/s10439-010-9926-4 | es_ES |
dc.description.references | ROSSILLO, A., VERMA, A., SAAD, E. B., CORRADO, A., GASPARINI, G., MARROUCHE, N. F., … NATALE, A. (2004). Impact of Coronary Sinus Lead Position on Biventricular Pacing: Journal of Cardiovascular Electrophysiology, 15(10), 1120-1125. doi:10.1046/j.1540-8167.2004.04089.x | es_ES |
dc.description.references | Roth, B. (1992). How the anisotropy of the intracellular and extracellular conductivities influences stimulation of cardiac muscle. Journal of Mathematical Biology, 30(6). doi:10.1007/bf00175610 | es_ES |
dc.description.references | Ruschitzka, F., Abraham, W. T., Singh, J. P., Bax, J. J., Borer, J. S., Brugada, J., … Holzmeister, J. (2013). Cardiac-Resynchronization Therapy in Heart Failure with a Narrow QRS Complex. New England Journal of Medicine, 369(15), 1395-1405. doi:10.1056/nejmoa1306687 | es_ES |
dc.description.references | Sebastian, R., Zimmerman, V., Romero, D., Sanchez-Quintana, D., & Frangi, A. F. (2013). Characterization and Modeling of the Peripheral Cardiac Conduction System. IEEE Transactions on Medical Imaging, 32(1), 45-55. doi:10.1109/tmi.2012.2221474 | es_ES |
dc.description.references | Sebastian, R., Zimmerman, V., Sukno, F., Bijnens, B. B., & Frangi, A. F. (2009). Cardiac Modelling for Pathophysiology Research and Clinical Applications. The Need for an Automated Pipeline. World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany, 2207-2210. doi:10.1007/978-3-642-03882-2_586 | es_ES |
dc.description.references | Sicouri, S., & Antzelevitch, C. (1991). A subpopulation of cells with unique electrophysiological properties in the deep subepicardium of the canine ventricle. The M cell. Circulation Research, 68(6), 1729-1741. doi:10.1161/01.res.68.6.1729 | es_ES |
dc.description.references | SICOURI, S., FISH, J., & ANTZELEVITCH, C. (1994). Distribution of M Cells in the Canine Ventricle. Journal of Cardiovascular Electrophysiology, 5(10), 824-837. doi:10.1111/j.1540-8167.1994.tb01121.x | es_ES |
dc.description.references | Singh, J. P., Fan, D., Heist, E. K., Alabiad, C. R., Taub, C., Reddy, V., … Mela, T. (2006). Left ventricular lead electrical delay predicts response to cardiac resynchronization therapy. Heart Rhythm, 3(11), 1285-1292. doi:10.1016/j.hrthm.2006.07.034 | es_ES |
dc.description.references | Singh, J. P., Klein, H. U., Huang, D. T., Reek, S., Kuniss, M., Quesada, A., … Moss, A. J. (2011). Left Ventricular Lead Position and Clinical Outcome in the Multicenter Automatic Defibrillator Implantation Trial–Cardiac Resynchronization Therapy (MADIT-CRT) Trial. Circulation, 123(11), 1159-1166. doi:10.1161/circulationaha.110.000646 | es_ES |
dc.description.references | Şipal, A. (2018). Surface electrogram-guided left ventricular lead placement improves response to cardiac resynchronization therapy. The Anatolian Journal of Cardiology. doi:10.14744/anatoljcardiol.2018.09216 | es_ES |
dc.description.references | Sommer, A., Kronborg, M. B., Nørgaard, B. L., Stephansen, C., Poulsen, S. H., Kristensen, J., … Nielsen, J. C. (2018). Longer inter-lead electrical delay is associated with response to cardiac resynchronization therapy in patients with presumed optimal left ventricular lead position. EP Europace, 20(10), 1630-1637. doi:10.1093/europace/eux384 | es_ES |
dc.description.references | Sperzel, J., Burri, H., Gras, D., Tjong, F. V. Y., Knops, R. E., Hindricks, G., … Defaye, P. (2015). State of the art of leadless pacing. Europace, 17(10), 1508-1513. doi:10.1093/europace/euv096 | es_ES |
dc.description.references | Spragg, D. D., Dong, J., Fetics, B. J., Helm, R., Marine, J. E., Cheng, A., … Berger, R. D. (2010). Optimal Left Ventricular Endocardial Pacing Sites for Cardiac Resynchronization Therapy in Patients With Ischemic Cardiomyopathy. Journal of the American College of Cardiology, 56(10), 774-781. doi:10.1016/j.jacc.2010.06.014 | es_ES |
dc.description.references | Stellbrink, C., Auricchio, A., Butter, C., Sack, S., Vogt, J., Böcker, D., … Ramdat-Misier, A. (2000). Pacing therapies in congestive heart failure II study. The American Journal of Cardiology, 86(9), K138-K143. doi:10.1016/s0002-9149(00)01298-4 | es_ES |
dc.description.references | Stewart, P., Aslanidi, O. V., Noble, D., Noble, P. J., Boyett, M. R., & Zhang, H. (2009). Mathematical models of the electrical action potential of Purkinje fibre cells. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1896), 2225-2255. doi:10.1098/rsta.2008.0283 | es_ES |
dc.description.references | Strauss, D. G., Selvester, R. H., & Wagner, G. S. (2011). Defining Left Bundle Branch Block in the Era of Cardiac Resynchronization Therapy. The American Journal of Cardiology, 107(6), 927-934. doi:10.1016/j.amjcard.2010.11.010 | es_ES |
dc.description.references | Strik, M., van Deursen, C. J. M., van Middendorp, L. B., van Hunnik, A., Kuiper, M., Auricchio, A., & Prinzen, F. W. (2013). Transseptal Conduction as an Important Determinant for Cardiac Resynchronization Therapy, as Revealed by Extensive Electrical Mapping in the Dyssynchronous Canine Heart. Circulation: Arrhythmia and Electrophysiology, 6(4), 682-689. doi:10.1161/circep.111.000028 | es_ES |
dc.description.references | Surawicz, B., Childers, R., Deal, B. J., & Gettes, L. S. (2009). AHA/ACCF/HRS Recommendations for the Standardization and Interpretation of the Electrocardiogram. Journal of the American College of Cardiology, 53(11), 976-981. doi:10.1016/j.jacc.2008.12.013 | es_ES |
dc.description.references | Sweeney, M. O., Hellkamp, A. S., van Bommel, R. J., Schalij, M. J., Jan Willem Borleffs, C., & Bax, J. J. (2014). QRS fusion complex analysis using wave interference to predict reverse remodeling during cardiac resynchronization therapy. Heart Rhythm, 11(5), 806-813. doi:10.1016/j.hrthm.2014.01.021 | es_ES |
dc.description.references | Taggart, P., Sutton, P. M., Opthof, T., Coronel, R., Trimlett, R., Pugsley, W., & Kallis, P. (2000). Inhomogeneous Transmural Conduction During Early Ischaemia in Patients with Coronary Artery Disease. Journal of Molecular and Cellular Cardiology, 32(4), 621-630. doi:10.1006/jmcc.2000.1105 | es_ES |
dc.description.references | TAMBORERO, D., VIDAL, B., TOLOSANA, J. M., SITGES, M., BERRUEZO, A., SILVA, E., … MONT, L. (2011). Electrocardiographic versus Echocardiographic Optimization of the Interventricular Pacing Delay in Patients Undergoing Cardiac Resynchronization Therapy. Journal of Cardiovascular Electrophysiology, 22(10), 1129-1134. doi:10.1111/j.1540-8167.2011.02085.x | es_ES |
dc.description.references | Liu, X., Tian, Y., Zhang, Y., Yan, Q., Mao, J., Dong, J., & Ma, C. (2017). Fragmented QRS complex in healthy adults: Prevalence, characteristics, mechanisms, and clinical implications. International Journal of Heart Rhythm, 2(1), 34. doi:10.4103/2352-4197.208459 | es_ES |
dc.description.references | Park, M. Y., Altman, R. K., Orencole, M., Kumar, P., Parks, K. A., Heist, K. E., … Picard, M. H. (2012). Characteristics of Responders to Cardiac Resynchronization Therapy: The Impact of Echocardiographic Left Ventricular Volume. Clinical Cardiology, 35(12), 779-780. doi:10.1002/clc.22043 | es_ES |
dc.description.references | Ulč, I., & Vančura, V. (2013). Optimization of pacing intervals in cardiac resynchronization therapy. Cor et Vasa, 55(5), e403-e410. doi:10.1016/j.crvasa.2013.06.001 | es_ES |
dc.description.references | Urbanek, B., Kaczmarek, K., Klimczak, A., Ruta, J., Chudzik, M., Piestrzeniewicz, K., … Wranicz, J. (2017). Potential benefit of optimizing atrioventricular & interventricular delays in patients with cardiac resynchronization therapy. Indian Journal of Medical Research, 146(1), 71. doi:10.4103/ijmr.ijmr_1560_14 | es_ES |
dc.description.references | Van Gelder, B. M., Bracke, F. A., Meijer, A., & Pijls, N. H. J. (2005). The Hemodynamic Effect of Intrinsic Conduction During Left Ventricular Pacing as Compared to Biventricular Pacing. Journal of the American College of Cardiology, 46(12), 2305-2310. doi:10.1016/j.jacc.2005.02.098 | es_ES |
dc.description.references | VAN GELDER, B. M., MEIJER, A., & BRACKE, F. A. (2009). Timing of the Left Ventricular Electrogram and Acute Hemodynamic Changes During Implant of Cardiac Resynchronization Therapy Devices. Pacing and Clinical Electrophysiology, 32, S94-S97. doi:10.1111/j.1540-8159.2008.02262.x | es_ES |
dc.description.references | Vatasescu, R., Berruezo, A., Mont, L., Tamborero, D., Sitges, M., Silva, E., … Brugada, J. (2009). Midterm «super-response» to cardiac resynchronization therapy by biventricular pacing with fusion: insights from electro-anatomical mapping. Europace, 11(12), 1675-1682. doi:10.1093/europace/eup333 | es_ES |
dc.description.references | VICTOR, F., MABO, P., MANSOUR, H., PAVIN, D., KABALU, G., PLACE, C. D., … DAUBERT, J. C. (2006). A Randomized Comparison of Permanent Septal Versus Apical Right Ventricular Pacing: Short-Term Results. Journal of Cardiovascular Electrophysiology, 17(3), 238-242. doi:10.1111/j.1540-8167.2006.00358.x | es_ES |
dc.description.references | Wang, Y., & Hill, J. A. (2010). Electrophysiological remodeling in heart failure. Journal of Molecular and Cellular Cardiology, 48(4), 619-632. doi:10.1016/j.yjmcc.2010.01.009 | es_ES |
dc.description.references | Yoshikawa, H., Suzuki, M., Tezuka, N., Otsuka, T., & Sugi, K. (2010). Differences in left ventricular dyssynchrony between high septal pacing and apical pacing in patients with normal left ventricular systolic function. Journal of Cardiology, 56(1), 44-50. doi:10.1016/j.jjcc.2010.02.002 | es_ES |
dc.description.references | Zanon, F., Baracca, E., Pastore, G., Fraccaro, C., Roncon, L., Aggio, S., … Prinzen, F. (2014). Determination of the Longest Intrapatient Left Ventricular Electrical Delay May Predict Acute Hemodynamic Improvement in Patients After Cardiac Resynchronization Therapy. Circulation: Arrhythmia and Electrophysiology, 7(3), 377-383. doi:10.1161/circep.113.000850 | es_ES |
dc.description.references | Zareba, W., Klein, H., Cygankiewicz, I., Hall, W. J., McNitt, S., Brown, M., … Moss, A. J. (2011). Effectiveness of Cardiac Resynchronization Therapy by QRS Morphology in the Multicenter Automatic Defibrillator Implantation Trial–Cardiac Resynchronization Therapy (MADIT-CRT). Circulation, 123(10), 1061-1072. doi:10.1161/circulationaha.110.960898 | es_ES |
dc.description.references | Zhang, J., Zhang, Y., Zhou, X., Li, J., Li, Y., Zhang, Y., … Tang, B. (2015). QRS duration shortening predicts left ventricular reverse remodelling in patients with dilated cardiomyopathy after cardiac resynchronization therapy. Acta Cardiologica, 70(3), 307-313. doi:10.1080/ac.70.3.3080635 | es_ES |