- -

In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene Acrylic Oligomer

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene Acrylic Oligomer

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Quiles-Carrillo, Luis es_ES
dc.contributor.author Montanes, Nestor es_ES
dc.contributor.author Lagaron, J.M. es_ES
dc.contributor.author Balart, Rafael es_ES
dc.contributor.author Torres-Giner, S. es_ES
dc.date.accessioned 2020-06-06T03:33:18Z
dc.date.available 2020-06-06T03:33:18Z
dc.date.issued 2019-01-15 es_ES
dc.identifier.issn 1566-2543 es_ES
dc.identifier.uri http://hdl.handle.net/10251/145565
dc.description.abstract [EN] The present study reports on the use of low-functionality epoxy-based styrene¿acrylic oligomer (ESAO) to compatibilize immiscible ternary blends made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), polylactide (PLA), and poly(butylene adipate-co-terephthalate) (PBAT). The addition during melt processing of low-functionality ESAO at two parts per hundred resin (phr) of biopolymer successfully changed the soften inclusion phase in the blend system to a thinner morphology, yielding biopolymer ternary blends with higher mechanical ductility and also improved oxygen barrier performance. The compatibilization achieved was ascribed to the in situ formation of a newly block terpolymer, i.e. PHBVb- PLA-b-PBAT, which was produced at the blend interface by the reaction of the multiple epoxy groups present in ESAO with the functional terminal groups of the biopolymers. This chemical reaction was mainly linear due to the inherently low functionality of ESAO and the more favorable reactivity of the epoxy groups with the carboxyl groups of the biopolymers, which avoided the formation of highly branched and/or cross-linked structures and thus facilitated the films processability. Therefore, the reactive blending of biopolymers at different mixing ratios with low-functionality ESAO represents a straightforward methodology to prepare sustainable plastics at industrial scale with different physical properties that can be of interest in, for instance, food packaging applications. es_ES
dc.description.sponsorship This research was funded by the EU H2020 project YPACK (Reference number 773872) and by the Spanish Ministry of Science, Innovation, and Universities (MICIU) with project numbers MAT2017-84909-C2-2-R and AGL2015-63855-C2-1-R. L. Quiles-Carrillo wants to thank the Spanish Ministry of Education, Culture, and Sports (MECD) for financial support through his FPU Grant Number FPU15/03812. Torres-Giner also acknowledges the MICIU for his Juan de la Cierva contract (IJCI-2016-29675). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Polymers and the Environment es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject PHBV es_ES
dc.subject PLA es_ES
dc.subject PBAT es_ES
dc.subject Reactive extrusion es_ES
dc.subject Biopolymer blends es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene Acrylic Oligomer es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10924-018-1324-2 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/773872/EU/HIGH PERFORMANCE POLYHYDROXYALKANOATES BASED PACKAGING TO MINIMISE FOOD WASTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-63855-C2-1-R/ES/DESARROLLO DE UN CONCEPTO DE ENVASE MULTICAPA ALIMENTARIO DE ALTA BARRERA Y CON CARACTER ACTIVO Y BIOACTIVO DERIVADO DE SUBPRODUCTOS ALIMENTARIOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU15%2F03812/ES/FPU15%2F03812/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Quiles-Carrillo, L.; Montanes, N.; Lagaron, J.; Balart, R.; Torres-Giner, S. (2019). In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene Acrylic Oligomer. Journal of Polymers and the Environment. 27(1):84-96. https://doi.org/10.1007/s10924-018-1324-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10924-018-1324-2 es_ES
dc.description.upvformatpinicio 84 es_ES
dc.description.upvformatpfin 96 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 27 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\373420 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Babu RP, O’Connor K, Seeram R (2013) Prog Biomater 2:8 es_ES
dc.description.references Torres-Giner S, Torres A, Ferrándiz M, Fombuena V, Balart R (2017) J Food Saf 37:e12348 es_ES
dc.description.references Quiles-Carrillo L, Montanes N, Boronat T, Balart R, Torres-Giner S (2017) Polym Test 61:421 es_ES
dc.description.references Zakharova E, Alla A, Martínez A, De Ilarduya S, Muñoz-Guerra (2015) RSC Adv 5:46395 es_ES
dc.description.references Steinbüchel A, Valentin HE (1995) FEMS Microbiol Lett 128:219 es_ES
dc.description.references McChalicher CWJ, Srienc F (2007) J Biotechnol 132:296 es_ES
dc.description.references Reis KC, Pereira J, Smith AC, Carvalho CWP, Wellner N, Yakimets I (2008) J Food Eng 89:361 es_ES
dc.description.references Vink ETH, Davies S (2015) Ind Biotechnol 11:167 es_ES
dc.description.references John RP, Nampoothiri KM, Pandey A (2006) Process Biochem 41:759 es_ES
dc.description.references Madhavan Nampoothiri K, Nair NR, John RP (2010) Biores Technol 101:8493 es_ES
dc.description.references Garlotta D (2001) J Polym Environ 9:63 es_ES
dc.description.references Lim LT, Auras R, Rubino M (2008) Prog Polym Sci 33:820 es_ES
dc.description.references Quiles-Carrillo L, Montanes N, Sammon C, Balart R, Torres-Giner S (2018) Ind Crops Prod 111:878 es_ES
dc.description.references Quiles-Carrillo L, Blanes-Martínez MM, Montanes N, Fenollar O, Torres-Giner S, Balart R (2018) Eur Polym J 98:402 es_ES
dc.description.references Witt U, Müller R-J, Deckwer W-D (1997) J Environ Polym Degrad 5:81 es_ES
dc.description.references Siegenthaler KO, Künkel A, Skupin G, Yamamoto M (2012) Ecoflex® and Ecovio®: biodegradable, performance-enabling plastics. In: Rieger B, Künkel A, Coates GW, Reichardt R, Dinjus E, Zevaco TA (eds) Synthetic biodegradable polymers. Springer, Berlin Heidelberg, p 91 es_ES
dc.description.references Jiang L, Wolcott MP, Zhang J (2006) Biomacromol 7:199 es_ES
dc.description.references Brandelero RPH, Yamashita F, Grossmann MVE (2010) Carbohyd Polym 82:1102 es_ES
dc.description.references Muthuraj R, Misra M, Mohanty AK (2014) J Polym Environ 22:336 es_ES
dc.description.references Porter RS, Wang L-H (1992) Polymer 33(10): 2019 es_ES
dc.description.references Koning C, Van Duin M, Pagnoulle C, Jerome R (1998) Prog Polym Sci 23:707 es_ES
dc.description.references Muthuraj R, Misra M, Mohanty AK (2017) J Appl Polym Sci 135:45726 es_ES
dc.description.references Ryan AJ (2002) Nat Mater 1:8 es_ES
dc.description.references Wu D, Zhang Y, Yuan L, Zhang M, Zhou W (2010) J Polym Sci Part B 48:756 es_ES
dc.description.references Kim CH, Cho KY, Choi EJ, Park JK (2000) J Appl Polym Sci 77:226 es_ES
dc.description.references Supthanyakul R, Kaabbuathong N, Chirachanchai S (2016) Polymer 105:1 es_ES
dc.description.references Na Y-H, He Y, Shuai X, Kikkawa Y, Doi Y, Inoue Y (2002) Biomacromolecules 3:1179 es_ES
dc.description.references Zeng J-B, Li K-A, Du A-K (2015) RSC Adv 5:32546 es_ES
dc.description.references Xanthos M, Dagli SS (1991) Polym Eng Sci 31:929 es_ES
dc.description.references Sundararaj U, Macosko CW (1995) Macromolecules 28:2647 es_ES
dc.description.references Milner ST, Xi H (1996) J Rheol 40:663 es_ES
dc.description.references Villalobos M, Awojulu A, Greeley T, Turco G, Deeter G (2006) Energy 31:3227 es_ES
dc.description.references Torres-Giner S, Montanes N, Boronat T, Quiles-Carrillo L, Balart R (2016) Eur Polym J 84:693 es_ES
dc.description.references Lehermeier HJ, Dorgan JR (2001) Polym Eng Sci 41:2172 es_ES
dc.description.references Liu B, Xu Q (2013) J Mater Sci Chem Eng 1:9 es_ES
dc.description.references Eslami H, Kamal MR (2013) J Appl Polym Sci 129:2418 es_ES
dc.description.references Loontjens T, Pauwels K, Derks F, Neilen M, Sham CK, Serné M (1997) J Appl Polym Sci 65:1813 es_ES
dc.description.references Ojijo V, Ray SS (2015) Polymer 80:1 es_ES
dc.description.references Frenz V, Scherzer D, Villalobos M, Awojulu AA, Edison M, Van Der Meer R (2008) Multifunctional polymers as chain extenders and compatibilizers for polycondensates and biopolymers. In: Technical papers, regional technical conference—society of plastics engineers, p. 3/1678 es_ES
dc.description.references Utracki LA (2002) Can J Chem Eng 80:1008 es_ES
dc.description.references Al-Itry R, Lamnawar K, Maazouz A (2012) Polym Degrad Stab 97:1898 es_ES
dc.description.references Lin S, Guo W, Chen C, Ma J, Wang B (2012) Mater Des (1980–2015) 36: 604 es_ES
dc.description.references Arruda LC, Magaton M, Bretas RES, Ueki MM (2015) Polym Test 43:27 es_ES
dc.description.references Wang Y, Fu C, Luo Y, Ruan C, Zhang Y, Fu Y (2010) J Wuhan Univ Technol Mater Sci Ed 25:774 es_ES
dc.description.references Wei D, Wang H, Xiao H, Zheng A, Yang Y (2015) Carbohyd Polym 123:275 es_ES
dc.description.references Abdelwahab MA, Taylor S, Misra M, Mohanty AK (2015) Macromol Mater Eng 300:299 es_ES
dc.description.references Sun Q, Mekonnen T, Misra M, Mohanty AK (2016) J Polym Environ 24:23 es_ES
dc.description.references Torres-Giner S, Gimeno-Alcañiz JV, Ocio MJ, Lagaron JM (2011) J Appl Polym Sci 122:914 es_ES
dc.description.references Miyata T, Masuko T (1998) Polymer 39:5515 es_ES
dc.description.references Muthuraj R, Misra M, Mohanty AK (2015) J Appl Polym Sci 132:42189 es_ES
dc.description.references Ren J, Fu H, Ren T, Yuan W (2009) Carbohyd Polym 77:576 es_ES
dc.description.references Torres-Giner S, Montanes N, Fenollar O, García-Sanoguera D, Balart R (2016) Mater Des 108:648 es_ES
dc.description.references Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Compr Rev Food Sci Food Saf 9:552 es_ES
dc.description.references Savenkova L, Gercberga Z, Nikolaeva V, Dzene A, Bibers I, Kalnin M (2000) Process Biochem 35:573 es_ES
dc.description.references Costa ARM, Almeida TG, Silva SML, Carvalho LH, Canedo EL (2015) Polym Test 42:115 es_ES
dc.description.references Zhang K, Mohanty AK, Misra M (2012) ACS Appl Mater Interfaces 4:3091 es_ES
dc.description.references Zhang N, Wang Q, Ren J, Wang L (2009) J Mater Sci 44:250 es_ES
dc.description.references Chinsirikul W, Rojsatean J, Hararak B, Kerddonfag N, Aontee A, Jaieau K, Kumsang P, Sripethdee C (2015) Packag Technol Sci 28:741 es_ES
dc.description.references Auras R, Harte B, Selke S (2004) J Appl Polym Sci 92:1790 es_ES
dc.description.references Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008) Carbohyd Polym 71:235 es_ES
dc.description.references Sanchez-Garcia MD, Gimenez E, Lagaron JM (2007) J Plast Film Sheeting 23:133 es_ES
dc.description.references Lagaron JM (2011) Multifunctional and nanoreinforced polymers for food packaging. In: Multifunctional and nanoreinforced polymers for food packaging. Woodhead Publishing, Cambridge, p 1 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem