- -

Development of algorithms of statistical signal processing for the detection and pattern recognitionin time series. Application to the diagnosis of electrical machines and to the features extraction in Actigraphy signals

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development of algorithms of statistical signal processing for the detection and pattern recognitionin time series. Application to the diagnosis of electrical machines and to the features extraction in Actigraphy signals

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.advisor Antonino Daviu, José Alfonso es_ES
dc.contributor.advisor Conejero Casares, José Alberto es_ES
dc.contributor.advisor Fernández de Córdoba Castellá, Pedro José es_ES
dc.contributor.author Iglesias Martínez, Miguel Enrique es_ES
dc.date.accessioned 2020-06-08T08:18:26Z
dc.date.available 2020-06-08T08:18:26Z
dc.date.created 2020-05-08
dc.date.issued 2020-06-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/145603
dc.description Tesis por compendio es_ES
dc.description.abstract [ES] En la actualidad, el desarrollo y aplicación de algoritmos para el reconocimiento de patrones que mejoren los niveles de rendimiento, detección y procesamiento de datos en diferentes áreas del conocimiento resulta un tema de gran interés. En este contexto, y específicamente en relación con la aplicación de estos algoritmos en el monitoreo y diagnóstico de máquinas eléctricas, el uso de señales de flujo es una alternativa muy interesante para detectar las diferentes fallas. Asimismo, y en relación con el uso de señales biomédicas, es de gran interés extraer características relevantes en las señales de actigrafía para la identificación de patrones que pueden estar asociados con una patología específica. En esta tesis, se han desarrollado y aplicado algoritmos basados en el procesamiento estadístico y espectral de señales, para la detección y diagnóstico de fallas en máquinas eléctricas, así como su aplicación al tratamiento de señales de actigrafía. Con el desarrollo de los algoritmos propuestos, se pretende tener un sistema dinámico de indicación e identificación para detectar la falla o la patología asociada que no depende de parámetros o información externa que pueda condicionar los resultados, sólo de la información primaria que inicialmente presenta la señal a tratar (como la periodicidad, amplitud, frecuencia y fase de la muestra). A partir del uso de los algoritmos desarrollados para la detección y diagnóstico de fallas en máquinas eléctricas, basados en el procesamiento estadístico y espectral de señales, se pretende avanzar, en relación con los modelos actualmente existentes, en la identificación de fallas mediante el uso de señales de flujo. Además, y por otro lado, mediante el uso de estadísticas de orden superior, para la extracción de anomalías en las señales de actigrafía, se han encontrado parámetros alternativos para la identificación de procesos que pueden estar relacionados con patologías específicas. es_ES
dc.description.abstract [CA] En l'actualitat, el desenvolupament i aplicació d'algoritmes per al reconeixement de patrons que milloren els nivells de rendiment, detecció i processament de dades en diferents àrees del coneixement és un tema de gran interés. En aquest context, i específicament en relació amb l'aplicació d'aquests algoritmes a la monitorització i diagnòstic de màquines elèctriques, l'ús de senyals de flux és una alternativa molt interessant per tal de detectar les diferents avaries. Així mateix, i en relació amb l'ús de senyals biomèdics, és de gran interés extraure característiques rellevants en els senyals d'actigrafia per a la identificació de patrons que poden estar associats amb una patologia específica. En aquesta tesi, s'han desenvolupat i aplicat algoritmes basats en el processament estadístic i espectral de senyals per a la detecció i diagnòstic d'avaries en màquines elèctriques, així com la seua aplicació al tractament de senyals d'actigrafia. Amb el desenvolupament dels algoritmes proposats, es pretén obtindre un sistema dinàmic d'indicació i identificació per a detectar l'avaria o la patologia associada, el qual no depenga de paràmetres o informació externa que puga condicionar els resultats, només de la informació primària que inicialment presenta el senyal a tractar (com la periodicitat, amplitud, freqüència i fase de la mostra). A partir de l'ús dels algoritmes desenvolupats per a la detecció i diagnòstic d'avaries en màquines elèctriques, basats en el processament estadístic i espectral de senyals, es pretén avançar, en relació amb els models actualment existents, en la identificació de avaries mitjançant l'ús de senyals de flux. A més, i d'altra banda, mitjançant l'ús d'estadístics d'ordre superior, per a l'extracció d'anomalies en els senyals d'actigrafía, s'han trobat paràmetres alternatius per a la identificació de processos que poden estar relacionats amb patologies específiques. es_ES
dc.description.abstract [EN] Nowadays, the development and application of algorithms for pattern recognition that improve the levels of performance, detection and data processing in different areas of knowledge is a topic of great interest. In this context, and specifically in relation to the application of these algorithms to the monitoring and diagnosis of electrical machines, the use of stray flux signals is a very interesting alternative to detect the different faults. Likewise, and in relation to the use of biomedical signals, it is of great interest to extract relevant features in actigraphy signals for the identification of patterns that may be associated with a specific pathology. In this thesis, algorithms based on statistical and spectral signal processing have been developed and applied to the detection and diagnosis of failures in electrical machines, as well as to the treatment of actigraphy signals. With the development of the proposed algorithms, it is intended to have a dynamic indication and identification system for detecting the failure or associated pathology that does not depend on parameters or external information that may condition the results, but only rely on the primary information that initially presents the signal to be treated (such as the periodicity, amplitude, frequency and phase of the sample). From the use of the algorithms developed for the detection and diagnosis of failures in electrical machines, based on the statistical and spectral signal processing, it is intended to advance, in relation to the models currently existing, in the identification of failures through the use of stray flux signals. In addition, and on the other hand, through the use of higher order statistics for the extraction of anomalies in actigraphy signals, alternative parameters have been found for the identification of processes that may be related to specific pathologies. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Señales es_ES
dc.subject Ruido es_ES
dc.subject Series de Tiempo es_ES
dc.subject Análisis de Datos es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title Development of algorithms of statistical signal processing for the detection and pattern recognitionin time series. Application to the diagnosis of electrical machines and to the features extraction in Actigraphy signals es_ES
dc.type Tesis doctoral es_ES
dc.identifier.doi 10.4995/Thesis/10251/145603 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Iglesias Martínez, ME. (2020). Development of algorithms of statistical signal processing for the detection and pattern recognitionin time series. Application to the diagnosis of electrical machines and to the features extraction in Actigraphy signals [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/145603 es_ES
dc.description.accrualMethod TESIS es_ES
dc.type.version info:eu-repo/semantics/acceptedVersion es_ES
dc.relation.pasarela TESIS\12892 es_ES
dc.description.compendio Compendio es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem