Mostrar el registro sencillo del ítem
dc.contributor.author | Tejedor, Javier | es_ES |
dc.contributor.author | Toledano, Doroteo T. | es_ES |
dc.contributor.author | Lopez-Otero, Paula | es_ES |
dc.contributor.author | Docio-Fernandez, Laura | es_ES |
dc.contributor.author | Proença, Jorge | es_ES |
dc.contributor.author | Perdigão, Fernando | es_ES |
dc.contributor.author | García-Granada, Fernando | es_ES |
dc.contributor.author | Sanchís Arnal, Emilio | es_ES |
dc.contributor.author | Pompili, Anna | es_ES |
dc.contributor.author | Abad, Alberto | es_ES |
dc.date.accessioned | 2020-06-09T03:31:45Z | |
dc.date.available | 2020-06-09T03:31:45Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 1687-4722 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/145736 | |
dc.description.abstract | [EN] Query-by-example Spoken Term Detection (QbE STD) aims to retrieve data from a speech repository given an acoustic (spoken) query containing the term of interest as the input. This paper presents the systems submitted to the ALBAYZIN QbE STD 2016 Evaluation held as a part of the ALBAYZIN 2016 Evaluation Campaign at the IberSPEECH 2016 conference. Special attention was given to the evaluation design so that a thorough post-analysis of the main results could be carried out. Two different Spanish speech databases, which cover different acoustic and language domains, were used in the evaluation: the MAVIR database, which consists of a set of talks from workshops, and the EPIC database, which consists of a set of European Parliament sessions in Spanish. We present the evaluation design, both databases, the evaluation metric, the systems submitted to the evaluation, the results, and a thorough analysis and discussion. Four different research groups participated in the evaluation, and a total of eight template matching-based systems were submitted. We compare the systems submitted to the evaluation and make an in-depth analysis based on some properties of the spoken queries, such as query length, single-word/multi-word queries, and in-language/out-of-language queries. | es_ES |
dc.description.sponsorship | This work was partially supported by Fundacao para a Ciencia e Tecnologia (FCT) under the projects UID/EEA/50008/2013 (pluriannual funding in the scope of the LETSREAD project) and UID/CEC/50021/2013, and Grant SFRH/BD/97187/2013. Jorge Proenca is supported by the SFRH/BD/97204/2013 FCT Grant. This work was also supported by the Galician Government ('Centro singular de investigacion de Galicia' accreditation 2016-2019 ED431G/01 and the research contract GRC2014/024 (Modalidade: Grupos de Referencia Competitiva 2014)), the European Regional Development Fund (ERDF), the projects "DSSL: Redes Profundas y Modelos de Subespacios para Deteccion y Seguimiento de Locutor, Idioma y Enfermedades Degenerativas a partir de la Voz" (TEC2015-68172-C2-1-P) and the TIN2015-64282-R funded by Ministerio de Economia y Competitividad in Spain, the Spanish Government through the project "TraceThem" (TEC2015-65345-P), and AtlantTIC ED431G/04. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer (Biomed Central Ltd.) | es_ES |
dc.relation | AtlantTIC/ED431G/04 | es_ES |
dc.relation.ispartof | EURASIP Journal on Audio, Speech and Music Processing | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Query-by-example | es_ES |
dc.subject | Spoken Term Detectio | es_ES |
dc.subject | International evaluation | es_ES |
dc.subject | Spanish,Search on spontaneous speech | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | ALBAYZIN Query-by-example Spoken Term Detection 2016 evaluation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1186/s13636-018-0125-9 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Xunta de Galicia//ED431G%2F01/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/5876/147328/PT/Instituto de Telecomunicações/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/Xunta de Galicia//GRC2014%2F024/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/5876/147282/PT/Instituto de Engenharia de Sistemas e Computadores, Investigação e Desenvolvimento em Lisboa/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2015-68172-C2-1-P/ES/REDES PROFUNDAS Y MODELOS DE SUBESPACIOS PARA DETECCION Y SEGUIMIENTO DE LOCUTOR, IDIOMA Y ENFERMEDADES DEGENERATIVAS A PARTIR DE LA VOZ/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBD%2F97204%2F2013/PT/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2015-65345-P/ES/DETECCION MULTIMEDIA Y MULTILINGUE DE INFORMACION SOBRE PERSONAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBD%2F97187%2F2013/PT/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-85854-C4-2-R/ES/AMIC-UPV: ANALISIS AFECTIVO DE INFORMACION MULTIMEDIA CON COMUNICACION INCLUSIVA Y NATURAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Tejedor, J.; Toledano, DT.; Lopez-Otero, P.; Docio-Fernandez, L.; Proença, J.; Perdigão, F.; García-Granada, F.... (2018). ALBAYZIN Query-by-example Spoken Term Detection 2016 evaluation. EURASIP Journal on Audio, Speech and Music Processing. 1-25. https://doi.org/10.1186/s13636-018-0125-9 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1186/s13636-018-0125-9 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 25 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\369385 | es_ES |
dc.contributor.funder | Xunta de Galicia | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Fundação para a Ciência e a Tecnologia, Portugal | es_ES |
dc.contributor.funder | Atlantic Research Center for Information and Communication Technologies | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Jarina, R, Kuba, M, Gubka, R, Chmulik, M, Paralic, M (2013). UNIZA system for the spoken web search task at MediaEval 2013. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 791–792). | es_ES |
dc.description.references | Ali, A, & Clements, MA (2013). Spoken web search using and ergodic hidden Markov model of speech. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 861–862). | es_ES |
dc.description.references | Buzo, A, Cucu, H, Burileanu, C (2014). SpeeD@MediaEval 2014: Spoken term detection with robust multilingual phone recognition. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 721–722). | es_ES |
dc.description.references | Caranica, A, Buzo, A, Cucu, H, Burileanu, C (2015). SpeeD@MediaEval 2015: Multilingual phone recognition approach to Query By Example STD. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 781–783). | es_ES |
dc.description.references | Kesiraju, S, Mantena, G, Prahallad, K (2014). IIIT-H system for MediaEval 2014 QUESST. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 761–762). | es_ES |
dc.description.references | Ma, M, & Rosenberg, A (2015). CUNY systems for the Query-by-Example search on speech task at MediaEval 2015. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 831–833). | es_ES |
dc.description.references | Takahashi, J, Hashimoto, T, Konno, R, Sugawara, S, Ouchi, K, Oshima, S, Akyu, T, Itoh, Y (2014). An IWAPU STD system for OOV query terms and spoken queries. In Proc. of NTCIR-11. National Institute of Informatics, Tokyo, (pp. 384–389). | es_ES |
dc.description.references | Makino, M, & Kai, A (2014). Combining subword and state-level dissimilarity measures for improved spoken term detection in NTCIR-11 SpokenQuery & Doc task. In Proc. of NTCIR-11. National Institute of Informatics, Tokyo, (pp. 413–418). | es_ES |
dc.description.references | Konno, R, Ouchi, K, Obara, M, Shimizu, Y, Chiba, T, Hirota, T, Itoh, Y (2016). An STD system using multiple STD results and multiple rescoring method for NTCIR-12 SpokenQuery & Doc task. In Proc. of NTCIR-12. National Institute of Informatics, Tokyo, (pp. 200–204). | es_ES |
dc.description.references | Sakamoto, N, Yamamoto, K, Nakagawa, S (2015). Combination of syllable based N-gram search and word search for spoken term detection through spoken queries and IV/OOV classification. In Proc. of ASRU. IEEE, New York, (pp. 200–206). | es_ES |
dc.description.references | Hou, J, Pham, VT, Leung, C-C, Wang, L, 2, HX, Lv, H, Xie, L, Fu, Z, Ni, C, Xiao, X, Chen, H, Zhang, S, Sun, S, Yuan, Y, Li, P, Nwe, TL, Sivadas, S, Ma, B, Chng, ES, Li, H (2015). The NNI Query-by-Example system for MediaEval 2015. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 141–143). | es_ES |
dc.description.references | Vavrek, J, Viszlay, P, Lojka, M, Pleva, M, Juhar, J, Rusko, M (2015). TUKE at MediaEval 2015 QUESST. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 451–453). | es_ES |
dc.description.references | Mantena, G, Achanta, S, Prahallad, K (2014). Query-by-example spoken term detection using frequency domain linear prediction and non-segmental dynamic time warping. IEEE/ACM Transactions on Audio, Speech and Language Processing, 22(5), 946–955. | es_ES |
dc.description.references | Anguera, X, & Ferrarons, M (2013). Memory efficient subsequence DTW for query-by-example spoken term detection. In Proc. of ICME. IEEE, New York, (pp. 1–6). | es_ES |
dc.description.references | Tulsiani, H, & Rao, P (2015). The IIT-B Query-by-Example system for MediaEval 2015. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 341–343). | es_ES |
dc.description.references | Bouallegue, M, Senay, G, Morchid, M, Matrouf, D, Linares, G, Dufour, R (2013). LIA@MediaEval 2013 spoken web search task: An I-Vector based approach. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 771–772). | es_ES |
dc.description.references | Rodriguez-Fuentes, LJ, Varona, A, Penagarikano, M, Bordel, G, Diez, M (2013). GTTS systems for the SWS task at MediaEval 2013. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 831–832). | es_ES |
dc.description.references | Wang, H, Lee, T, Leung, C-C, Ma, B, Li, H (2013). Using parallel tokenizers with DTW matrix combination for low-resource spoken term detection. In Proc. of ICASSP. IEEE, New York, (pp. 8545–8549). | es_ES |
dc.description.references | Wang, H, & Lee, T (2013). The CUHK spoken web search system for MediaEval 2013. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 681–682). | es_ES |
dc.description.references | Proenca, J, Veiga, A, Perdigão, F (2014). The SPL-IT query by example search on speech system for MediaEval 2014. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 741–742). | es_ES |
dc.description.references | Proenca, J, Veiga, A, Perdigao, F (2015). Query by example search with segmented dynamic time warping for non-exact spoken queries. In Proc. of EUSIPCO. Springer, Berlin, (pp. 1691–1695). | es_ES |
dc.description.references | Proenca, J, Castela, L, Perdigao, F (2015). The SPL-IT-UC Query by Example search on speech system for MediaEval 2015. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 471–473). | es_ES |
dc.description.references | Proenca, J, & Perdigao, F (2016). Segmented dynamic time warping for spoken Query-by-Example search. In Proc. of Interspeech. ISCA, Baixas, (pp. 750–754). | es_ES |
dc.description.references | Lopez-Otero, P, Docio-Fernandez, L, Garcia-Mateo, C (2015). GTM-UVigo systems for the Query-by-Example search on speech task at MediaEval 2015. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 521–523). | es_ES |
dc.description.references | Lopez-Otero, P, Docio-Fernandez, L, Garcia-Mateo, C (2015). Phonetic unit selection for cross-lingual Query-by-Example spoken term detection. In Proc. of ASRU. IEEE, New York, (pp. 223–229). | es_ES |
dc.description.references | Saxena, A, & Yegnanarayana, B (2015). Distinctive feature based representation of speech for Query-by-Example spoken term detection. In Proc. of Interspeech. ISCA, Baixas, (pp. 3680–3684). | es_ES |
dc.description.references | Skacel, M, & Szöke, I (2015). BUT QUESST 2015 system description. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 721–723). | es_ES |
dc.description.references | Chen, H, Leung, C-C, Xie, L, Ma, B, Li, H (2016). Unsupervised bottleneck features for low-resource Query-by-Example spoken term detection. In Proc. of Interspeech. ISCA, Baixas, (pp. 923–927). | es_ES |
dc.description.references | Yuan, Y, Leung, C-C, Xie, L, Chen, H, Ma, B, Li, H (2017). Pairwise learning using multi-lingual bottleneck features for low-resource Query-by-Example spoken term detection. In Proc. of ICASSP. IEEE, New York, (pp. 5645–5649). | es_ES |
dc.description.references | Torbati, AHHN, & Picone, J (2016). A nonparametric Bayesian approach for spoken term detection by example query. In Proc. of Interspeech. ISCA, Baixas, (pp. 928–932). | es_ES |
dc.description.references | Popli, A, & Kumar, A (2015). Query-by-example spoken term detection using low dimensional posteriorgrams motivated by articulatory classes. In Proc. of MMSP. IEEE, New York, (pp. 1–6). | es_ES |
dc.description.references | Yang, P, Leung, C-C, Xie, L, Ma, B, Li, H (2014). Intrinsic spectral analysis based on temporal context features for query-by-example spoken term detection. In Proc. of Interspeech. ISCA, Baixas, (pp. 1722–1726). | es_ES |
dc.description.references | George, B, Saxena, A, Mantena, G, Prahallad, K, Yegnanarayana, B (2014). Unsupervised query-by-example spoken term detection using bag of acoustic words and non-segmental dynamic time warping. In Proc. of Interspeech. ISCA, Baixas, (pp. 1742–1746). | es_ES |
dc.description.references | Hazen, TJ, Shen, W, White, CM (2009). Query-by-example spoken term detection using phonetic posteriorgram templates. In Proc. of ASRU. IEEE, New York, (pp. 421–426). | es_ES |
dc.description.references | Abad, A, Astudillo, RF, Trancoso, I (2013). The L2F spoken web search system for mediaeval 2013. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 851–852). | es_ES |
dc.description.references | Szöke, I, Skácel, M, Burget, L (2014). BUT QUESST 2014 system description. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 621–622). | es_ES |
dc.description.references | Szöke, I, Burget, L, Grézl, F, Černocký, JH, Ondel, L (2014). Calibration and fusion of query-by-example systems - BUT SWS 2013. In Proc. of ICASSP. IEEE, New York, (pp. 621–622). | es_ES |
dc.description.references | Abad, A, Rodríguez-Fuentes, LJ, Penagarikano, M, Varona, A, Bordel, G (2013). On the calibration and fusion of heterogeneous spoken term detection systems. In Proc. of Interspeech. ISCA, Baixas, (pp. 20–24). | es_ES |
dc.description.references | Yang, P, Xu, H, Xiao, X, Xie, L, Leung, C-C, Chen, H, Yu, J, Lv, H, Wang, L, Leow, SJ, Ma, B, Chng, ES, Li, H (2014). The NNI query-by-example system for MediaEval 2014. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 691–692). | es_ES |
dc.description.references | Leung, C-C, Wang, L, Xu, H, Hou, J, Pham, VT, Lv, H, Xie, L, Xiao, X, Ni, C, Ma, B, Chng, ES, Li, H (2016). Toward high-performance language-independent Query-by-Example spoken term detection for MediaEval 2015: Post-evaluation analysis. In Proc. of Interspeech. ISCA, Baixas, (pp. 3703–3707). | es_ES |
dc.description.references | Xu, H, Hou, J, Xiao, X, Pham, VT, Leung, C-C, Wang, L, Do, VH, Lv, H, Xie, L, Ma, B, Chng, ES, Li, H (2016). Approximate search of audio queries by using DTW with phone time boundary and data augmentation. In Proc. of ICASSP. IEEE, New York, (pp. 6030–6034). | es_ES |
dc.description.references | Oishi, S, Matsuba, T, Makino, M, Kai, A (2016). Combining state-level and DNN-based acoustic matches for efficient spoken term detection in NTCIR-12 SpokenQuery &Doc-2 task. In Proc. of NTCIR-12. National Institute of Informatics, Tokyo, (pp. 205–210). | es_ES |
dc.description.references | Oishi, S, Matsuba, T, Makino, M, Kai, A (2016). Combining state-level spotting and posterior-based acoustic match for improved query-by-example spoken term detection. In Proc. of Interspeech. ISCA, Baixas, (pp. 740–744). | es_ES |
dc.description.references | Obara, M, Kojima, K, Tanaka, K, Lee, S-w, Itoh, Y (2016). Rescoring by combination of posteriorgram score and subword-matching score for use in Query-by-Example. In Proc. of Interspeech. ISCA, Baixas, (pp. 1918–1922). | es_ES |
dc.description.references | NIST. The Ninth Text REtrieval Conference (TREC 9). http://trec.nist.gov . Accessed Feb 2018. | es_ES |
dc.description.references | Anguera, X, Rodriguez-Fuentes, LJ, Szöke, I, Buzo, A, Metze, F (2014). Query by Example Search on Speech at Mediaeval 2014. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 351–352). | es_ES |
dc.description.references | Joho, H, & Kishida, K (2014). Overview of the NTCIR-11 SpokenQuery&Doc Task. In Proc. of NTCIR-11. National Institute of Informatics, Tokyo, (pp. 1–7). | es_ES |
dc.description.references | NIST. Draft KWS16 Keyword Search Evaluation Plan. https://www.nist.gov/sites/default/files/documents/itl/iad/mig/KWS16-evalplan-v04.pdf . Accessed Feb 2018. | es_ES |
dc.description.references | Anguera, X, Metze, F, Buzo, A, Szöke, I, Rodriguez-Fuentes, LJ (2013). The spoken web search task. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 921–922). | es_ES |
dc.description.references | Taras, B, & Nadeu, C (2011). Audio segmentation of broadcast news in the Albayzin-2010 evaluation: overview, results, and discussion. EURASIP Journal on Audio, Speech, and Music Processing, 2011(1), 1–10. | es_ES |
dc.description.references | Zelenák, M, Schulz, H, Hernando, J (2012). Speaker diarization of broadcast news in Albayzin 2010 evaluation campaign. EURASIP Journal on Audio, Speech, and Music Processing, 2012(19), 1–9. | es_ES |
dc.description.references | Rodríguez-Fuentes, LJ, Penagarikano, M, Varona, A, Díez, M, Bordel, G (2011). The Albayzin 2010 Language Recognition Evaluation. In Proc. of Interspeech. ISCA, Baixas, (pp. 1529–1532). | es_ES |
dc.description.references | Tejedor, J, Toledano, DT, Lopez-Otero, P, Docio-Fernandez, L, Garcia-Mateo, C, Cardenal, A, Echeverry-Correa, JD, Coucheiro-Limeres, A, Olcoz, J, Miguel, A (2015). Spoken term detection ALBAYZIN 2014 evaluation: overview, systems, results, and discussion. EURASIP, Journal on Audio, Speech and Music Processing, 2015(21), 1–27. | es_ES |
dc.description.references | Tejedor, J, Toledano, DT, Anguera, X, Varona, A, Hurtado, LF, Miguel, A, Colás, J (2013). Query-by-example spoken term detection ALBAYZIN 2012 evaluation: overview, systems, results, and discussion. EURASIP, Journal on Audio, Speech, and Music Processing, 2013(23), 1–17. | es_ES |
dc.description.references | Tejedor, J, Toledano, DT, Lopez-Otero, P, Docio-Fernandez, L, Garcia-Mateo, C (2016). Comparison of ALBAYZIN query-by-example spoken term detection 2012 and 2014 evaluations. EURASIP, Journal on Audio, Speech and Music Processing, 2016(1), 1–19. | es_ES |
dc.description.references | Méndez, F, Docío, L, Arza, M, Campillo, F (2010). The Albayzin 2010 text-to-speech evaluation. In Proc. of FALA. UniversidadeVigo, Vigo, (pp. 317–340). | es_ES |
dc.description.references | Billa, J, Ma, KW, McDonough, JW, Zavaliagkos, G, Miller, DR, Ross, KN, El-Jaroudi, A (1997). Multilingual speech recognition: the 1996 Byblos Callhome system. In Proc. of Eurospeech. ISCA, Baixas, (pp. 363–366). | es_ES |
dc.description.references | Killer, M, Stuker, S, Schultz, T (2003). Grapheme based speech recognition. In Proc. of Eurospeech. ISCA, Baixas, (pp. 3141–3144). | es_ES |
dc.description.references | Burget, L, Schwarz, P, Agarwal, M, Akyazi, P, Feng, K, Ghoshal, A, Glembek, O, Goel, N, Karafiat, M, Povey, D, Rastrow, A, Rose, RC, Thomas, S (2010). Multilingual acoustic modeling for speech recognition based on subspace gaussian mixture models. In Proc. of ICASSP. IEEE, New York, (pp. 4334–4337). | es_ES |
dc.description.references | Cuayahuitl, H, & Serridge, B (2002). Out-of-vocabulary word modeling and rejection for Spanish keyword spotting systems. In Proc. of MICAI. Springer, Berlin, (pp. 156–165). | es_ES |
dc.description.references | Tejedor, J (2009). Contributions to keyword spotting and spoken term detection for information retrieval in audio mining. PhD thesis, Universidad Autónoma de Madrid, Madrid, Spain. | es_ES |
dc.description.references | Tejedor, J, Toledano, DT, Wang, D, King, S, Colás, J (2014). Feature analysis for discriminative confidence estimation in spoken term detection. Computer Speech and Language, 28(5), 1083–1114. | es_ES |
dc.description.references | Li, J, Wang, X, Xu, B (2014). An empirical study of multilingual and low-resource spoken term detection using deep neural networks. In Proc. of Interspeech. ISCA, Baixas, (pp. 1747–1751). | es_ES |
dc.description.references | NIST. The Spoken Term Detection (STD) 2006 evaluation plan. http://berlin.csie.ntnu.edu.tw/Courses/Special%20Topics%20in%20Spoken%20Language%20Processing/Lectures2008/SLP2008S-Lecture12-Spoken%20Term%20Detection.pdf . Accessed Feb 2018. | es_ES |
dc.description.references | Fiscus, JG, Ajot, J, Garofolo, JS, Doddingtion, G (2007). Results of the 2006 spoken term detection evaluation. In Proc. of SSCS. ACM, New York, (pp. 45–50). | es_ES |
dc.description.references | Martin, A, Doddington, G, Kamm, T, Ordowski, M, Przybocki, M (1997). The DET curve in assessment of detection task performance. In Proc. of Eurospeech. ISCA, Baixas, (pp. 1895–1898). | es_ES |
dc.description.references | NIST. Evaluation Toolkit (STDEval) software. https://www.nist.gov/itl/iad/mig/tools . Accessed Feb 2018. | es_ES |
dc.description.references | Union, IT. ITU-T Recommendation P.563: Single-ended method for objective speech quality assessment in narrow-band telephony applications. http://www.itu.int/rec/T-REC-P.563/en . Accessed Feb 2018. | es_ES |
dc.description.references | Rajput, N, & Metze, F (2011). Spoken web search. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 1–2). | es_ES |
dc.description.references | Metze, F, Barnard, E, Davel, M, van Heerden, C, Anguera, X, Gravier, G, Rajput, N (2012). The spoken web search task. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 41–42). | es_ES |
dc.description.references | Szöke, I, Rodriguez-Fuentes, LJ, Buzo, A, Anguera, X, Metze, F, Proenca, J, Lojka, M, Xiong, X (2015). Query by Example Search on Speech at Mediaeval 2015. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 81–82). | es_ES |
dc.description.references | Szöke, I, & Anguera, X (2016). Zero-cost speech recognition task at Mediaeval 2016. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 81–82). | es_ES |
dc.description.references | Akiba, T, Nishizaki, H, Nanjo, H, Jones, GJF (2014). Overview of the NTCIR-11 spokenquery &doc task. In Proc. of NTCIR-11. National Institute of Informatics, Tokyo, (pp. 1–15). | es_ES |
dc.description.references | Akiba, T, Nishizaki, H, Nanjo, H, Jones, GJF (2016). Overview of the NTCIR-12 spokenquery &doc-2. In Proc. of NTCIR-12. National Institute of Informatics, Tokyo, (pp. 1–13). | es_ES |
dc.description.references | Schwarz, P (2008). Phoneme recognition based on long temporal context. PhD thesis, FIT, BUT, Brno, Czech Republic. | es_ES |
dc.description.references | Varona, A, Penagarikano, M, Rodríguez-Fuentes, LJ, Bordel, G (2011). On the use of lattices of time-synchronous cross-decoder phone co-occurrences in a SVM-phonotactic language recognition system. In Proc. of Interspeech. ISCA, Baixas, (pp. 2901–2904). | es_ES |
dc.description.references | Eyben, F, Wollmer, M, Schuller, B (2010). OpenSMILE—the munich versatile and fast open-source audio feature extractor. In Proc. of ACM Multimedia (MM). ACM, New York, (pp. 1459–1462). | es_ES |
dc.description.references | Lopez-Otero, P, Docio-Fernandez, L, Garcia-Mateo, C (2016). Finding relevant features for zero-resource query-by-example search on speech. Speech Communication, 84(1), 24–35. | es_ES |
dc.description.references | Zhang, Y, & Glass, JR (2009). Unsupervised spoken keyword spotting via segmental DTW on Gaussian posteriorgrams. In Proc. of ASRU. IEEE, New York, (pp. 398–403). | es_ES |
dc.description.references | Povey, D, Ghoshal, A, Boulianne, G, Burget, L, Glembek, O, Goel, N, Hannemann, M, Motlicek, P, Qian, Y, Schwarz, P, Silovsky, J, Stemmer, G, Vesely, K (2011). The KALDI speech recognition toolkit. In Proc. of ASRU. IEEE, New York, (pp. 1–4). | es_ES |
dc.description.references | Muller, M. (2007). Information retrieval for music and motion. New York: Springer. | es_ES |
dc.description.references | Szöke, I, Skacel, M, Burget, L (2014). BUT QUESST 2014 system description. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 621–622). | es_ES |
dc.description.references | Brümmer, N, & van Leeuwen, D (2006). On calibration of language recognition scores. In Proc of the IEEE Odyssey: The speaker and language recognition workshop. IEEE, New York, (pp. 1–8). | es_ES |
dc.description.references | Brümmer, N, & de Villiers, E. The BOSARIS toolkit user guide: Theory, algorithms and code for binary classifier score processing. Technical report. https://sites.google.com/site/nikobrummer . Accessed Feb 2018. | es_ES |
dc.description.references | Meinedo, H, & Neto, J (2005). A stream-based audio segmentation, classification and clustering pre-processing system for broadcast news using ANN models. In Proc. of Interspeech. ISCA, Baixas, (pp. 237–240). | es_ES |
dc.description.references | Morgan, N, & Bourlard, H (1995). An introduction to hybrid HMM/connectionist continuous speech recognition. IEEE Signal Processing Magazine, 12(3), 25–42. | es_ES |
dc.description.references | Meinedo, H, Abad, A, Pellegrini, T, Trancoso, I, Neto, J (2010). The L2F broadcast news speech recognition system. In Proc. of FALA. UniversidadeVigo, Vigo, (pp. 93–96). | es_ES |
dc.description.references | Abad, A, Luque, J, Trancoso, I (2011). Parallel transformation network features for speaker recognition. In Proc. of ICASSP. IEEE, New York, (pp. 5300–5303). | es_ES |
dc.description.references | Diez, M, Varona, A, Penagarikano, M, Rodriguez-Fuentes, LJ, Bordel, G (2012). On the use of phone log-likelihood ratios as features in spoken language recognition. In Proc. of SLT. IEEE, New York, (pp. 274–279). | es_ES |
dc.description.references | Diez, M, Varona, A, Penagarikano, M, Rodriguez-Fuentes, LJ, Bordel, G (2014). New insight into the use of phone log-likelihood ratios as features for language recognition. In Proc. of Interspeech. ISCA, Baixas, (pp. 1841–1845). | es_ES |
dc.description.references | Abad, A, Ribeiro, E, Kepler, F, Astudillo, R, Trancoso, I (2016). Exploiting phone log-likelihood ratio features for the detection of the native language of non-native English speakers. In Proc. of Interspeech. ISCA, Baixas, (pp. 2413–2417). | es_ES |
dc.description.references | Rodríguez-Fuentes, LJ, Varona, A, Peñagarikano, M, Bordel, G, Díez, M (2014). High-performance query-by-example spoken term detection on the SWS 2013 evaluation. In Proc. of ICASSP. IEEE, New York, (pp. 7819–7823). | es_ES |
dc.description.references | Vesely, K, Ghoshal, A, Burget, L, Povey, D (2013). Sequence-discriminative training of deep neural networks. In Proc. of Interspeech. ISCA, Baixas, (pp. 2345–2349). | es_ES |
dc.description.references | Ghahremani, P, BabaAli, B, Povey, D, Riedhammer, K, Trmal, J, Khudanpur, S (2014). A pitch extraction algorithm tuned for automatic speech recognition. In Proc. of ICASSP. IEEE, New York, (pp. 2494–2498). | es_ES |
dc.description.references | Povey, D, Hannemann, M, Boulianne, G, Burget, L, Ghoshal, A, Janda, M, Karafiat, M, Kombrink, S, Motlicek, P, Qian, Y, Riedhammer, K, Vesely, K, Vu, NT (2012). Generating exact lattices in the WFST framework. In Proc. of ICASSP. IEEE, New York, (pp. 4213–4216). | es_ES |
dc.description.references | Garcia-Mateo, C, Dieguez-Tirado, J, Docio-Fernandez, L, Cardenal-Lopez, A (2004). Transcrigal: A bilingual system for automatic indexing of broadcast news. In Proc. of LREC. ELRA, Paris, (pp. 2061–2064). | es_ES |
dc.description.references | Stolcke, A (2002). SRILM—an extensible language modeling toolkit. In Proc. of Interspeech. ISCA, Baixas, (pp. 901–904). | es_ES |
dc.description.references | Lopez-Otero, P, Docio-Fernandez, L, Garcia-Mateo, C (2016). GTM-UVigo systems for Albayzin 2016 search on speech evaluation. In Proc. of Iberspeech. Springer, Berlin, (pp. 65–74). | es_ES |
dc.description.references | Chen, G, Khudanpur, S, Povey, D, Trmal, J, Yarowsky, D, Yilmaz, O (2013). Quantifying the value of pronunciation lexicons for keyword search in low resource languages. In Proc. of ICASSP. IEEE, New York, (pp. 8560–8564). | es_ES |
dc.description.references | Pham, VT, Chen, NF, Sivadas, S, Xu, H, Chen, I-F, Ni, C, Chng, ES, Li, H (2014). System and keyword dependent fusion for spoken term detection. In Proc. of SLT. IEEE, New York, (pp. 430–435). | es_ES |
dc.description.references | Can, D, & Saraclar, M (2011). Lattice indexing for spoken term detection. IEEE Transactions on Audio, Speech and Language Processing, 19(8), 2338–2347. | es_ES |
dc.description.references | Miller, DRH, Kleber, M, Kao, C-L, Kimball, O, Colthurst, T, Lowe, SA, Schwartz, RM, Gish, H (2007). Rapid and accurate spoken term detection. In Proc. of Interspeech. ISCA, Baixas, (pp. 314–317). | es_ES |