Mostrar el registro sencillo del ítem
dc.contributor.author | Gómez Jiménez, Maria Dolores | es_ES |
dc.contributor.author | Barro-Trastoy, Daniela | es_ES |
dc.contributor.author | Escoms, E. | es_ES |
dc.contributor.author | Saura-Sanchez, M. | es_ES |
dc.contributor.author | Sanchez, I. | es_ES |
dc.contributor.author | Briones-Moreno, Asier | es_ES |
dc.contributor.author | Vera Sirera, Francisco José | es_ES |
dc.contributor.author | Carrera Bergua, Esther | es_ES |
dc.contributor.author | Ripoll, J.J. | es_ES |
dc.contributor.author | Yanofsky, Martin | es_ES |
dc.contributor.author | Lopez Diaz, Isabel | es_ES |
dc.contributor.author | Alonso, J.M. | es_ES |
dc.contributor.author | Perez Amador, Miguel Angel | es_ES |
dc.date.accessioned | 2020-06-09T03:32:17Z | |
dc.date.available | 2020-06-09T03:32:17Z | |
dc.date.issued | 2018-07 | es_ES |
dc.identifier.issn | 0950-1991 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/145749 | |
dc.description.abstract | [EN] Ovule formation is a complex developmental process in plants, with a strong impact on the production of seeds. Ovule primordia initiation is controlled by a gene network, including components of the signaling pathways of auxin, brassinosteroids and cytokinins. By contrast, gibberellins (GAs) and DELLA proteins, the negative regulators of GA signaling, have never been shown to be involved in ovule initiation. Here, we provide molecular and genetic evidence that points to DELLA proteins as novel players in the determination of ovule number in Arabidopsis and in species of agronomic interest, such as tomato and rapeseed, adding a new layer of complexity to this important developmental process. DELLA activity correlates positively with ovule number, acting as a positive factor for ovule initiation. In addition, ectopic expression of a dominant DELLA in the placenta is sufficient to increase ovule number. The role of DELLA proteins in ovule number does not appear to be related to auxin transport or signaling in the ovule primordia. Possible crosstalk between DELLA proteins and the molecular and hormonal network controlling ovule initiation is also discussed. | es_ES |
dc.description.sponsorship | This work was supported by grants from the Ministerio de Economia y Competitividad and the European Regional Development Fund (BIO2014-55946) and Generalitat Valenciana (ACOMP/2014/106) to M.A.P.-A, from the National Science Foundation (MCB-0923727) to J.M.A., and from the National Institutes of Health (R01GM112976-01A1) and the Saltman Endowed Chair in Science and Education to M.F.Y. Deposited in PMC for release after 12 months. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Company of Biologists | es_ES |
dc.relation.ispartof | Development | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Ovule | es_ES |
dc.subject | Seed | es_ES |
dc.subject | Gibberellin | es_ES |
dc.subject | Auxin | es_ES |
dc.subject | Arabidopsis | es_ES |
dc.subject | Tomato | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.title | Gibberellins negatively modulate ovule number in plants | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1242/dev.163865 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//1R01GM112976-01A1/US/A novel genetic network controlling meristem initiation and stem cell patterning/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSF//0923727/US/Molecular Genetics of Ethylene-auxin Interactions in Arabidopsis/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACOMP%2F2014%2F106/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIO2014-55946-P/ES/LAS GIBERELINAS EN EL CONTROL DE LA MORFOGENESIS DE LOS OVULOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Gómez Jiménez, MD.; Barro-Trastoy, D.; Escoms, E.; Saura-Sanchez, M.; Sanchez, I.; Briones-Moreno, A.; Vera Sirera, FJ.... (2018). Gibberellins negatively modulate ovule number in plants. Development. 145(13). https://doi.org/10.1242/dev.163865 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1242/dev.163865 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 145 | es_ES |
dc.description.issue | 13 | es_ES |
dc.identifier.pmid | 29914969 | es_ES |
dc.relation.pasarela | S\369557 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | National Science Foundation, EEUU | es_ES |
dc.contributor.funder | National Institutes of Health, EEUU | es_ES |
dc.contributor.funder | University of California, San Diego | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Anders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology, 11(10). doi:10.1186/gb-2010-11-10-r106 | es_ES |
dc.description.references | Bai, M.-Y., Shang, J.-X., Oh, E., Fan, M., Bai, Y., Zentella, R., … Wang, Z.-Y. (2012). Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nature Cell Biology, 14(8), 810-817. doi:10.1038/ncb2546 | es_ES |
dc.description.references | Balanzà, V., Martínez-Fernández, I., Sato, S., Yanofsky, M. F., Kaufmann, K., Angenent, G. C., … Ferrándiz, C. (2018). Genetic control of meristem arrest and life span in Arabidopsis by a FRUITFULL-APETALA2 pathway. Nature Communications, 9(1). doi:10.1038/s41467-018-03067-5 | es_ES |
dc.description.references | Bartrina, I., Otto, E., Strnad, M., Werner, T., & Schmülling, T. (2011). Cytokinin Regulates the Activity of Reproductive Meristems, Flower Organ Size, Ovule Formation, and Thus Seed Yield in Arabidopsis thaliana. The Plant Cell, 23(1), 69-80. doi:10.1105/tpc.110.079079 | es_ES |
dc.description.references | Bencivenga, S., Simonini, S., Benková, E., & Colombo, L. (2012). The Transcription Factors BEL1 and SPL Are Required for Cytokinin and Auxin Signaling During Ovule Development in Arabidopsis. The Plant Cell, 24(7), 2886-2897. doi:10.1105/tpc.112.100164 | es_ES |
dc.description.references | Benková, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertová, D., Jürgens, G., & Friml, J. (2003). Local, Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ Formation. Cell, 115(5), 591-602. doi:10.1016/s0092-8674(03)00924-3 | es_ES |
dc.description.references | Carbonell-Bejerano, P., Urbez, C., Carbonell, J., Granell, A., & Perez-Amador, M. A. (2010). A Fertilization-Independent Developmental Program Triggers Partial Fruit Development and Senescence Processes in Pistils of Arabidopsis. Plant Physiology, 154(1), 163-172. doi:10.1104/pp.110.160044 | es_ES |
dc.description.references | Carrera, E., Ruiz-Rivero, O., Peres, L. E. P., Atares, A., & Garcia-Martinez, J. L. (2012). Characterization of the procera Tomato Mutant Shows Novel Functions of the SlDELLA Protein in the Control of Flower Morphology, Cell Division and Expansion, and the Auxin-Signaling Pathway during Fruit-Set and Development. Plant Physiology, 160(3), 1581-1596. doi:10.1104/pp.112.204552 | es_ES |
dc.description.references | Ceccato, L., Masiero, S., Sinha Roy, D., Bencivenga, S., Roig-Villanova, I., Ditengou, F. A., … Colombo, L. (2013). Maternal Control of PIN1 Is Required for Female Gametophyte Development in Arabidopsis. PLoS ONE, 8(6), e66148. doi:10.1371/journal.pone.0066148 | es_ES |
dc.description.references | Christensen, C. A., King, E. J., Jordan, J. R., & Drews, G. N. (1997). Megagametogenesis in Arabidopsis wild type and the Gf mutant. Sexual Plant Reproduction, 10(1), 49-64. doi:10.1007/s004970050067 | es_ES |
dc.description.references | Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.x | es_ES |
dc.description.references | Cucinotta, M., Colombo, L., & Roig-Villanova, I. (2014). Ovule development, a new model for lateral organ formation. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00117 | es_ES |
dc.description.references | Cucinotta, M., Manrique, S., Guazzotti, A., Quadrelli, N. E., Mendes, M. A., Benkova, E., & Colombo, L. (2016). Cytokinin response factors integrate auxin and cytokinin pathways for female reproductive organ development. Development, 143(23), 4419-4424. doi:10.1242/dev.143545 | es_ES |
dc.description.references | Curtis, M. D., & Grossniklaus, U. (2003). A Gateway Cloning Vector Set for High-Throughput Functional Analysis of Genes in Planta. Plant Physiology, 133(2), 462-469. doi:10.1104/pp.103.027979 | es_ES |
dc.description.references | Cutcliffe, J. W., Hellmann, E., Heyl, A., & Rashotte, A. M. (2011). CRFs form protein–protein interactions with each other and with members of the cytokinin signalling pathway in Arabidopsis via the CRF domain. Journal of Experimental Botany, 62(14), 4995-5002. doi:10.1093/jxb/err199 | es_ES |
dc.description.references | Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K., & Scheible, W.-R. (2005). Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis. Plant Physiology, 139(1), 5-17. doi:10.1104/pp.105.063743 | es_ES |
dc.description.references | Davière, J.-M., & Achard, P. (2016). A Pivotal Role of DELLAs in Regulating Multiple Hormone Signals. Molecular Plant, 9(1), 10-20. doi:10.1016/j.molp.2015.09.011 | es_ES |
dc.description.references | De Vleesschauwer, D., Van Buyten, E., Satoh, K., Balidion, J., Mauleon, R., Choi, I.-R., … Höfte, M. (2012). Brassinosteroids Antagonize Gibberellin- and Salicylate-Mediated Root Immunity in Rice. Plant Physiology, 158(4), 1833-1846. doi:10.1104/pp.112.193672 | es_ES |
dc.description.references | Deveaux, Y., Toffano-Nioche, C., Claisse, G., Thareau, V., Morin, H., Laufs, P., … Lecharny, A. (2008). Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis. BMC Evolutionary Biology, 8(1), 291. doi:10.1186/1471-2148-8-291 | es_ES |
dc.description.references | Dill, A., Jung, H.-S., & Sun, T. -p. (2001). The DELLA motif is essential for gibberellin-induced degradation of RGA. Proceedings of the National Academy of Sciences, 98(24), 14162-14167. doi:10.1073/pnas.251534098 | es_ES |
dc.description.references | Dorcey, E., Urbez, C., Blázquez, M. A., Carbonell, J., & Perez-Amador, M. A. (2009). Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. The Plant Journal, 58(2), 318-332. doi:10.1111/j.1365-313x.2008.03781.x | es_ES |
dc.description.references | Elliott, R. C., Betzner, A. S., Huttner, E., Oakes, M. P., Tucker, W. Q., Gerentes, D., … Smyth, D. R. (1996). AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. The Plant Cell, 8(2), 155-168. doi:10.1105/tpc.8.2.155 | es_ES |
dc.description.references | Endress, P. K. (2011). Angiosperm ovules: diversity, development, evolution. Annals of Botany, 107(9), 1465-1489. doi:10.1093/aob/mcr120 | es_ES |
dc.description.references | Ezura, K., Ji-Seong, K., Mori, K., Suzuki, Y., Kuhara, S., Ariizumi, T., & Ezura, H. (2017). Genome-wide identification of pistil-specific genes expressed during fruit set initiation in tomato (Solanum lycopersicum). PLOS ONE, 12(7), e0180003. doi:10.1371/journal.pone.0180003 | es_ES |
dc.description.references | Ferreira, L. G., de Alencar Dusi, D. M., Irsigler, A. S. T., Gomes, A. C. M. M., Mendes, M. A., Colombo, L., & de Campos Carneiro, V. T. (2017). GID1 expression is associated with ovule development of sexual and apomictic plants. Plant Cell Reports, 37(2), 293-306. doi:10.1007/s00299-017-2230-0 | es_ES |
dc.description.references | Fuentes, S., Ljung, K., Sorefan, K., Alvey, E., Harberd, N. P., & Østergaard, L. (2012). Fruit Growth in Arabidopsis Occurs via DELLA-Dependent and DELLA-Independent Gibberellin Responses. The Plant Cell, 24(10), 3982-3996. doi:10.1105/tpc.112.103192 | es_ES |
dc.description.references | Galbiati, F., Sinha Roy, D., Simonini, S., Cucinotta, M., Ceccato, L., Cuesta, C., … Colombo, L. (2013). An integrative model of the control of ovule primordia formation. The Plant Journal, 76(3), 446-455. doi:10.1111/tpj.12309 | es_ES |
dc.description.references | Gallego-Bartolome, J., Minguet, E. G., Grau-Enguix, F., Abbas, M., Locascio, A., Thomas, S. G., … Blazquez, M. A. (2012). Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proceedings of the National Academy of Sciences, 109(33), 13446-13451. doi:10.1073/pnas.1119992109 | es_ES |
dc.description.references | Gallego-Giraldo, C., Hu, J., Urbez, C., Gomez, M. D., Sun, T., & Perez-Amador, M. A. (2014). Role of the gibberellin receptors GID1 during fruit-set in Arabidopsis. The Plant Journal, 79(6), 1020-1032. doi:10.1111/tpj.12603 | es_ES |
dc.description.references | García-Hurtado, N., Carrera, E., Ruiz-Rivero, O., López-Gresa, M. P., Hedden, P., Gong, F., & García-Martínez, J. L. (2012). The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. Journal of Experimental Botany, 63(16), 5803-5813. doi:10.1093/jxb/ers229 | es_ES |
dc.description.references | Gasser, C. S., Broadhvest, J., & Hauser, B. A. (1998). GENETIC ANALYSIS OF OVULE DEVELOPMENT. Annual Review of Plant Physiology and Plant Molecular Biology, 49(1), 1-24. doi:10.1146/annurev.arplant.49.1.1 | es_ES |
dc.description.references | Gomez, M. D., Ventimilla, D., Sacristan, R., & Perez-Amador, M. A. (2016). Gibberellins Regulate Ovule Integument Development by Interfering with the Transcription Factor ATS. Plant Physiology, 172(4), 2403-2415. doi:10.1104/pp.16.01231 | es_ES |
dc.description.references | Gomez-Mena, C. (2005). Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development, 132(3), 429-438. doi:10.1242/dev.01600 | es_ES |
dc.description.references | Gupta, R., & Chakrabarty, S. K. (2013). Gibberellic acid in plant. Plant Signaling & Behavior, 8(9), e25504. doi:10.4161/psb.25504 | es_ES |
dc.description.references | Hassidim, M., Harir, Y., Yakir, E., Kron, I., & Green, R. M. (2009). Over-expression of CONSTANS-LIKE 5 can induce flowering in short-day grown Arabidopsis. Planta, 230(3), 481-491. doi:10.1007/s00425-009-0958-7 | es_ES |
dc.description.references | Heisler, M. G., Ohno, C., Das, P., Sieber, P., Reddy, G. V., Long, J. A., & Meyerowitz, E. M. (2005). Patterns of Auxin Transport and Gene Expression during Primordium Development Revealed by Live Imaging of the Arabidopsis Inflorescence Meristem. Current Biology, 15(21), 1899-1911. doi:10.1016/j.cub.2005.09.052 | es_ES |
dc.description.references | Huang, H.-Y., Jiang, W.-B., Hu, Y.-W., Wu, P., Zhu, J.-Y., Liang, W.-Q., … Lin, W.-H. (2013). BR Signal Influences Arabidopsis Ovule and Seed Number through Regulating Related Genes Expression by BZR1. Molecular Plant, 6(2), 456-469. doi:10.1093/mp/sss070 | es_ES |
dc.description.references | Khanna, R., Kronmiller, B., Maszle, D. R., Coupland, G., Holm, M., Mizuno, T., & Wu, S.-H. (2009). The Arabidopsis B-Box Zinc Finger Family. The Plant Cell, 21(11), 3416-3420. doi:10.1105/tpc.109.069088 | es_ES |
dc.description.references | Li, Q.-F., Wang, C., Jiang, L., Li, S., Sun, S. S. M., & He, J.-X. (2012). An Interaction Between BZR1 and DELLAs Mediates Direct Signaling Crosstalk Between Brassinosteroids and Gibberellins in Arabidopsis. Science Signaling, 5(244), ra72-ra72. doi:10.1126/scisignal.2002908 | es_ES |
dc.description.references | Mantegazza, O., Gregis, V., Mendes, M. A., Morandini, P., Alves-Ferreira, M., Patreze, C. M., … Colombo, L. (2014). Analysis of the arabidopsis REM gene family predicts functions during flower development. Annals of Botany, 114(7), 1507-1515. doi:10.1093/aob/mcu124 | es_ES |
dc.description.references | La Rosa, N. M. -d., Sotillo, B., Miskolczi, P., Gibbs, D. J., Vicente, J., Carbonero, P., … Blazquez, M. A. (2014). Large-Scale Identification of Gibberellin-Related Transcription Factors Defines Group VII ETHYLENE RESPONSE FACTORS as Functional DELLA Partners. PLANT PHYSIOLOGY, 166(2), 1022-1032. doi:10.1104/pp.114.244723 | es_ES |
dc.description.references | Marín-de la Rosa, N., Pfeiffer, A., Hill, K., Locascio, A., Bhalerao, R. P., Miskolczi, P., … Alabadí, D. (2015). Genome Wide Binding Site Analysis Reveals Transcriptional Coactivation of Cytokinin-Responsive Genes by DELLA Proteins. PLOS Genetics, 11(7), e1005337. doi:10.1371/journal.pgen.1005337 | es_ES |
dc.description.references | Matias-Hernandez, L., Battaglia, R., Galbiati, F., Rubes, M., Eichenberger, C., Grossniklaus, U., … Colombo, L. (2010). VERDANDI Is a Direct Target of the MADS Domain Ovule Identity Complex and Affects Embryo Sac Differentiation in Arabidopsis. The Plant Cell, 22(6), 1702-1715. doi:10.1105/tpc.109.068627 | es_ES |
dc.description.references | McAbee, J. M., Hill, T. A., Skinner, D. J., Izhaki, A., Hauser, B. A., Meister, R. J., … Gasser, C. S. (2006). ABERRANT TESTA SHAPE encodes a KANADI family member, linking polarity determination to separation and growth of Arabidopsis ovule integuments. The Plant Journal, 46(3), 522-531. doi:10.1111/j.1365-313x.2006.02717.x | es_ES |
dc.description.references | Moore, I., Samalova, M., & Kurup, S. (2006). Transactivated and chemically inducible gene expression in plants. The Plant Journal, 45(4), 651-683. doi:10.1111/j.1365-313x.2006.02660.x | es_ES |
dc.description.references | Moubayidin, L., Perilli, S., Dello Ioio, R., Di Mambro, R., Costantino, P., & Sabatini, S. (2010). The Rate of Cell Differentiation Controls the Arabidopsis Root Meristem Growth Phase. Current Biology, 20(12), 1138-1143. doi:10.1016/j.cub.2010.05.035 | es_ES |
dc.description.references | Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x | es_ES |
dc.description.references | Nole-Wilson, S., Azhakanandam, S., & Franks, R. G. (2010). Polar auxin transport together with AINTEGUMENTA and REVOLUTA coordinate early Arabidopsis gynoecium development. Developmental Biology, 346(2), 181-195. doi:10.1016/j.ydbio.2010.07.016 | es_ES |
dc.description.references | Pagnussat, G. C. (2005). Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development, 132(3), 603-614. doi:10.1242/dev.01595 | es_ES |
dc.description.references | Peng, J., Carol, P., Richards, D. E., King, K. E., Cowling, R. J., Murphy, G. P., & Harberd, N. P. (1997). The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses . Genes & Development, 11(23), 3194-3205. doi:10.1101/gad.11.23.3194 | es_ES |
dc.description.references | Plackett, A. R. G., Ferguson, A. C., Powers, S. J., Wanchoo‐Kohli, A., Phillips, A. L., Wilson, Z. A., … Thomas, S. G. (2013). DELLA activity is required for successful pollen development in the Columbia ecotype of Arabidopsis. New Phytologist, 201(3), 825-836. doi:10.1111/nph.12571 | es_ES |
dc.description.references | Porri, A., Torti, S., Romera-Branchat, M., & Coupland, G. (2012). Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods. Development, 139(12), 2198-2209. doi:10.1242/dev.077164 | es_ES |
dc.description.references | Reyes-Olalde, J. I., Zuñiga-Mayo, V. M., Chávez Montes, R. A., Marsch-Martínez, N., & de Folter, S. (2013). Inside the gynoecium: at the carpel margin. Trends in Plant Science, 18(11), 644-655. doi:10.1016/j.tplants.2013.08.002 | es_ES |
dc.description.references | José Ripoll, J., Bailey, L. J., Mai, Q.-A., Wu, S. L., Hon, C. T., Chapman, E. J., … Yanofsky, M. F. (2015). microRNA regulation of fruit growth. Nature Plants, 1(4). doi:10.1038/nplants.2015.36 | es_ES |
dc.description.references | Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2009). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139-140. doi:10.1093/bioinformatics/btp616 | es_ES |
dc.description.references | Romera-Branchat, M., Ripoll, J. J., Yanofsky, M. F., & Pelaz, S. (2012). TheWOX13homeobox gene promotes replum formation in theArabidopsis thalianafruit. The Plant Journal, 73(1), 37-49. doi:10.1111/tpj.12010 | es_ES |
dc.description.references | Ross, J. J., & Quittenden, L. J. (2016). Interactions between Brassinosteroids and Gibberellins: Synthesis or Signaling? The Plant Cell, 28(4), 829-832. doi:10.1105/tpc.15.00917 | es_ES |
dc.description.references | Schneitz, K., Hulskamp, M., & Pruitt, R. E. (1995). Wild-type ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue. The Plant Journal, 7(5), 731-749. doi:10.1046/j.1365-313x.1995.07050731.x | es_ES |
dc.description.references | Skinner, D. J., & Gasser, C. S. (2009). Expression-based discovery of candidate ovule development regulators through transcriptional profiling of ovule mutants. BMC Plant Biology, 9(1), 29. doi:10.1186/1471-2229-9-29 | es_ES |
dc.description.references | Skinner, D. J. (2004). Regulation of Ovule Development. THE PLANT CELL ONLINE, 16(suppl_1), S32-S45. doi:10.1105/tpc.015933 | es_ES |
dc.description.references | Smyth, D. R., Bowman, J. L., & Meyerowitz, E. M. (1990). Early flower development in Arabidopsis. The Plant Cell, 2(8), 755-767. doi:10.1105/tpc.2.8.755 | es_ES |
dc.description.references | Sun, T. (2010). Gibberellin-GID1-DELLA: A Pivotal Regulatory Module for Plant Growth and Development. Plant Physiology, 154(2), 567-570. doi:10.1104/pp.110.161554 | es_ES |
dc.description.references | Feraru, E., Feraru, M. I., Kleine-Vehn, J., Martinière, A., Mouille, G., Vanneste, S., … Friml, J. (2011). PIN Polarity Maintenance by the Cell Wall in Arabidopsis. Current Biology, 21(4), 338-343. doi:10.1016/j.cub.2011.01.036 | es_ES |
dc.description.references | Sun, Y., Fan, X.-Y., Cao, D.-M., Tang, W., He, K., Zhu, J.-Y., … Wang, Z.-Y. (2010). Integration of Brassinosteroid Signal Transduction with the Transcription Network for Plant Growth Regulation in Arabidopsis. Developmental Cell, 19(5), 765-777. doi:10.1016/j.devcel.2010.10.010 | es_ES |
dc.description.references | Suzuki, H., Park, S.-H., Okubo, K., Kitamura, J., Ueguchi-Tanaka, M., Iuchi, S., … Nakajima, M. (2009). Differential expression and affinities of Arabidopsis gibberellin receptors can explain variation in phenotypes of multiple knock-out mutants. The Plant Journal, 60(1), 48-55. doi:10.1111/j.1365-313x.2009.03936.x | es_ES |
dc.description.references | Swain, S. M., & Singh, D. P. (2005). Tall tales from sly dwarves: novel functions of gibberellins in plant development. Trends in Plant Science, 10(3), 123-129. doi:10.1016/j.tplants.2005.01.007 | es_ES |
dc.description.references | Tanaka, K., Nakamura, Y., Asami, T., Yoshida, S., Matsuo, T., & Okamoto, S. (2003). Physiological Roles of Brassinosteroids in Early Growth of Arabidopsis: Brassinosteroids Have a Synergistic Relationship with Gibberellin as well as Auxin in Light-Grown Hypocotyl Elongation. Journal of Plant Growth Regulation, 22(3), 259-271. doi:10.1007/s00344-003-0119-3 | es_ES |
dc.description.references | Tong, H., Xiao, Y., Liu, D., Gao, S., Liu, L., Yin, Y., … Chu, C. (2014). Brassinosteroid Regulates Cell Elongation by Modulating Gibberellin Metabolism in Rice. The Plant Cell, 26(11), 4376-4393. doi:10.1105/tpc.114.132092 | es_ES |
dc.description.references | Truernit, E., Bauby, H., Dubreucq, B., Grandjean, O., Runions, J., Barthélémy, J., & Palauqui, J.-C. (2008). High-Resolution Whole-Mount Imaging of Three-Dimensional Tissue Organization and Gene Expression Enables the Study of Phloem Development and Structure in Arabidopsis. The Plant Cell, 20(6), 1494-1503. doi:10.1105/tpc.107.056069 | es_ES |
dc.description.references | Unterholzner, S. J., Rozhon, W., Papacek, M., Ciomas, J., Lange, T., Kugler, K. G., … Poppenberger, B. (2015). Brassinosteroids Are Master Regulators of Gibberellin Biosynthesis in Arabidopsis. The Plant Cell, 27(8), 2261-2272. doi:10.1105/tpc.15.00433 | es_ES |
dc.description.references | Vera-Sirera, F. , Gomez, M. D. and Perez-Amador, M. A. (2015). DELLA proteins, a group of GRAS transcription regulators, mediate gibberellin signaling. In Plant Transcription Factors: Evolutionary, Structural and Functional Aspects (ed. D. H. Gonzalez ), pp. 313-328. San Diego: Elsevier/Academic Press. | es_ES |
dc.description.references | Villarino, G. H., Hu, Q., Manrique, S., Flores-Vergara, M., Sehra, B., Robles, L., … Franks, R. G. (2016). Transcriptomic Signature of the SHATTERPROOF2 Expression Domain Reveals the Meristematic Nature of Arabidopsis Gynoecial Medial Domain. Plant Physiology, 171(1), 42-61. doi:10.1104/pp.15.01845 | es_ES |
dc.description.references | Weigel, D. and Glazebrook, J. (2002). Arabidopsis: A laboratory Manual . Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press. | es_ES |
dc.description.references | Yadegari, R. (2004). Female Gametophyte Development. THE PLANT CELL ONLINE, 16(suppl_1), S133-S141. doi:10.1105/tpc.018192 | es_ES |
dc.description.references | Zhang, Z.-L., Ogawa, M., Fleet, C. M., Zentella, R., Hu, J., Heo, J.-O., … Sun, T. (2011). SCARECROW-LIKE 3 promotes gibberellin signaling by antagonizing master growth repressor DELLA in Arabidopsis. Proceedings of the National Academy of Sciences, 108(5), 2160-2165. doi:10.1073/pnas.1012232108 | es_ES |