Mostrar el registro sencillo del ítem
dc.contributor.author | Abdolpour, Hassan | es_ES |
dc.contributor.author | Garzón-Roca, Julio | es_ES |
dc.contributor.author | Escusa, Gonçalo | es_ES |
dc.contributor.author | Sena-Cruz, J.M. | es_ES |
dc.contributor.author | Barros, J. | es_ES |
dc.contributor.author | Valente, Isabel | es_ES |
dc.date.accessioned | 2020-06-10T03:31:34Z | |
dc.date.available | 2020-06-10T03:31:34Z | |
dc.date.issued | 2018-06-01 | es_ES |
dc.identifier.issn | 0021-9983 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/145854 | |
dc.description.abstract | [EN] The present paper explores a new modular floor prototype to be used in emergency houses. The prototype is composed of a frame structure made of glass-fiber-reinforced polymer (GFRP) tubular pultruded profiles, a slab made of sandwich panels with a polyurethane (PU) foam core and GFRP skins, and a tailored connection system that provides integrity between assembled components. A series of experimental tests are carried out including flexural tests on a single panel, on two and three connected panels, and on the assembled floor prototype. The behaviour of the panels is analysed when they are not considered part of the GFRP framed structure, namely the failure mechanisms and the efficiency of the proposed connection system between the panels. The performance of the floor prototype to support typical load conditions of residential houses is also assessed. Additionally, an analytical model was used to deeper study the behavior of the developed sandwich panels, connection system and the modular floor prototype. | es_ES |
dc.description.sponsorship | The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work is part of the research project ClickHouse-Development of a prefabricated emergency house prototype made of composites materials, involving the company ALTO - Perfis Pultrudidos, Lda., CERis/Instituto Superior Tecnico and ISISE/University of Minho, supported by FEDER funds through the Operational Program for Competitiveness Factors - COMPETE and the Portuguese National Agency of Innovation (ADI) - project no. 38967. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | Journal of Composite Materials | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Emergency house | es_ES |
dc.subject | Composite materials | es_ES |
dc.subject | GFRP pultruded profiles | es_ES |
dc.subject | Sandwich panels | es_ES |
dc.subject | GFRP skins | es_ES |
dc.subject | PU foam core | es_ES |
dc.subject.classification | INGENIERIA DEL TERRENO | es_ES |
dc.title | Composite modular floor prototype for emergency housing applications:Experimental and analytical approach | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/0021998317733318 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANI//COMPETE-38967/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería del Terreno - Departament d'Enginyeria del Terreny | es_ES |
dc.description.bibliographicCitation | Abdolpour, H.; Garzón-Roca, J.; Escusa, G.; Sena-Cruz, J.; Barros, J.; Valente, I. (2018). Composite modular floor prototype for emergency housing applications:Experimental and analytical approach. Journal of Composite Materials. 52(13):1747-1764. https://doi.org/10.1177/0021998317733318 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1177/0021998317733318 | es_ES |
dc.description.upvformatpinicio | 1747 | es_ES |
dc.description.upvformatpfin | 1764 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 52 | es_ES |
dc.description.issue | 13 | es_ES |
dc.relation.pasarela | S\343654 | es_ES |
dc.contributor.funder | Agência Nacional de Inovação, Portugal | es_ES |
dc.contributor.funder | European Regional Development Fund | |
dc.description.references | Johnson, C. (2007). Impacts of prefabricated temporary housing after disasters: 1999 earthquakes in Turkey. Habitat International, 31(1), 36-52. doi:10.1016/j.habitatint.2006.03.002 | es_ES |
dc.description.references | Arslan, H., & Cosgun, N. (2008). Reuse and recycle potentials of the temporary houses after occupancy: Example of Duzce, Turkey. Building and Environment, 43(5), 702-709. doi:10.1016/j.buildenv.2007.01.051 | es_ES |
dc.description.references | Dodoo, A., & Gustavsson, L. (2013). Life cycle primary energy use and carbon footprint of wood-frame conventional and passive houses with biomass-based energy supply. Applied Energy, 112, 834-842. doi:10.1016/j.apenergy.2013.04.008 | es_ES |
dc.description.references | Datin, P. L., & Prevatt, D. O. (2013). Using instrumented small-scale models to study structural load paths in wood-framed buildings. Engineering Structures, 54, 47-56. doi:10.1016/j.engstruct.2013.03.039 | es_ES |
dc.description.references | Imperadori, M., Salvalai, G., & Pusceddu, C. (2014). Air Shelter House Technology and its Application to Shelter Units: the Case of Scaffold House and Cardboard Shelter Installations. Procedia Economics and Finance, 18, 552-559. doi:10.1016/s2212-5671(14)00975-7 | es_ES |
dc.description.references | Ljunggren, F., & Ågren, A. (2011). Potential solutions to improved sound performance of volume based lightweight multi-storey timber buildings. Applied Acoustics, 72(4), 231-240. doi:10.1016/j.apacoust.2010.11.007 | es_ES |
dc.description.references | Winandy, J. E., Hunt, J. F., Turk, C., & Anderson, J. R. (2006). Emergency housing systems from three-dimensional engineered fiberboard : temporary building systems for lightweight, portable, easy-to-assemble, reusable, recyclable, and biodegradable structures. doi:10.2737/fpl-gtr-166 | es_ES |
dc.description.references | Kootsookos, A., & Burchill, P. . (2004). The effect of the degree of cure on the corrosion resistance of vinyl ester/glass fibre composites. Composites Part A: Applied Science and Manufacturing, 35(4), 501-508. doi:10.1016/j.compositesa.2003.08.010 | es_ES |
dc.description.references | Nguyen, C. H., Chandrashekhara, K., & Birman, V. (2012). Multifunctional thermal barrier coating in aerospace sandwich panels. Mechanics Research Communications, 39(1), 35-43. doi:10.1016/j.mechrescom.2011.10.003 | es_ES |
dc.description.references | Allard, J. F., & Atalla, N. (2009). Propagation of Sound in Porous Media. doi:10.1002/9780470747339 | es_ES |
dc.description.references | Sousa, J. M., Correia, J. R., Cabral-Fonseca, S., & Diogo, A. C. (2014). Effects of thermal cycles on the mechanical response of pultruded GFRP profiles used in civil engineering applications. Composite Structures, 116, 720-731. doi:10.1016/j.compstruct.2014.06.008 | es_ES |
dc.description.references | Correia, J. R., Cabral-Fonseca, S., Branco, F. A., Ferreira, J. G., Eusébio, M. I., & Rodrigues, M. P. (2006). Durability of pultruded glass-fiber-reinforced polyester profiles for structural applications. Mechanics of Composite Materials, 42(4), 325-338. doi:10.1007/s11029-006-0042-3 | es_ES |
dc.description.references | Rizkalla, S., Lucier, G., & Dawood, M. (2012). Innovative Use of FRP for the Precast Concrete Industry. Advances in Structural Engineering, 15(4), 565-574. doi:10.1260/1369-4332.15.4.565 | es_ES |
dc.description.references | Oppe, M. W., & Knippers, J. (2011). Application of bolted connections in fibre-reinforced polymers. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 164(5), 321-332. doi:10.1680/stbu.2011.164.5.321 | es_ES |
dc.description.references | Shawkat, W., Honickman, H., & Fam, A. (2008). Investigation of a Novel Composite Cladding Wall Panel in Flexure. Journal of Composite Materials, 42(3), 315-330. doi:10.1177/0021998307087965 | es_ES |
dc.description.references | Sharaf, T., Shawkat, W., & Fam, A. (2010). Structural Performance of Sandwich Wall Panels with Different Foam Core Densities in One-way Bending. Journal of Composite Materials, 44(19), 2249-2263. doi:10.1177/0021998310369577 | es_ES |
dc.description.references | Correia, J. R., Garrido, M., Gonilha, J. A., Branco, F. A., & Reis, L. G. (2012). GFRP sandwich panels with PU foam and PP honeycomb cores for civil engineering structural applications. International Journal of Structural Integrity, 3(2), 127-147. doi:10.1108/17579861211235165 | es_ES |
dc.description.references | Keller, T., Haas, C., & Vallée, T. (2008). Structural Concept, Design, and Experimental Verification of a Glass Fiber-Reinforced Polymer Sandwich Roof Structure. Journal of Composites for Construction, 12(4), 454-468. doi:10.1061/(asce)1090-0268(2008)12:4(454) | es_ES |
dc.description.references | Mousa, M. A., & Uddin, N. (2011). Global buckling of composite structural insulated wall panels. Materials & Design, 32(2), 766-772. doi:10.1016/j.matdes.2010.07.026 | es_ES |
dc.description.references | Garrido, M., Correia, J. R., Keller, T., & Branco, F. A. (2015). Adhesively bonded connections between composite sandwich floor panels for building rehabilitation. Composite Structures, 134, 255-268. doi:10.1016/j.compstruct.2015.08.080 | es_ES |
dc.description.references | Zenkert, D., Shipsha, A., & Persson, K. (2004). Static indentation and unloading response of sandwich beams. Composites Part B: Engineering, 35(6-8), 511-522. doi:10.1016/j.compositesb.2003.09.006 | es_ES |
dc.description.references | Petras, A., & Sutcliffe, M. P. F. (1999). Indentation resistance of sandwich beams. Composite Structures, 46(4), 413-424. doi:10.1016/s0263-8223(99)00109-9 | es_ES |
dc.description.references | Rizov, V., Shipsha, A., & Zenkert, D. (2005). Indentation study of foam core sandwich composite panels. Composite Structures, 69(1), 95-102. doi:10.1016/j.compstruct.2004.05.013 | es_ES |
dc.description.references | Petras, A., & Sutcliffe, M. P. . (2000). Indentation failure analysis of sandwich beams. Composite Structures, 50(3), 311-318. doi:10.1016/s0263-8223(00)00122-7 | es_ES |
dc.description.references | Borsellino, C., Calabrese, L., & Valenza, A. (2004). Experimental and numerical evaluation of sandwich composite structures. Composites Science and Technology, 64(10-11), 1709-1715. doi:10.1016/j.compscitech.2004.01.003 | es_ES |
dc.description.references | Fam, A., & Sharaf, T. (2010). Flexural performance of sandwich panels comprising polyurethane core and GFRP skins and ribs of various configurations. Composite Structures, 92(12), 2927-2935. doi:10.1016/j.compstruct.2010.05.004 | es_ES |
dc.description.references | Carlsson, L. A., & Kardomateas, G. A. (2011). Structural and Failure Mechanics of Sandwich Composites. Solid Mechanics and Its Applications. doi:10.1007/978-1-4020-3225-7 | es_ES |
dc.description.references | Eskandari, H. (2003). The effect of shear deformation on material selection for bending components. Materials & Design, 24(2), 143-149. doi:10.1016/s0261-3069(02)00125-5 | es_ES |