- -

Composite modular floor prototype for emergency housing applications:Experimental and analytical approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Composite modular floor prototype for emergency housing applications:Experimental and analytical approach

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Abdolpour, Hassan es_ES
dc.contributor.author Garzón-Roca, Julio es_ES
dc.contributor.author Escusa, Gonçalo es_ES
dc.contributor.author Sena-Cruz, J.M. es_ES
dc.contributor.author Barros, J. es_ES
dc.contributor.author Valente, Isabel es_ES
dc.date.accessioned 2020-06-10T03:31:34Z
dc.date.available 2020-06-10T03:31:34Z
dc.date.issued 2018-06-01 es_ES
dc.identifier.issn 0021-9983 es_ES
dc.identifier.uri http://hdl.handle.net/10251/145854
dc.description.abstract [EN] The present paper explores a new modular floor prototype to be used in emergency houses. The prototype is composed of a frame structure made of glass-fiber-reinforced polymer (GFRP) tubular pultruded profiles, a slab made of sandwich panels with a polyurethane (PU) foam core and GFRP skins, and a tailored connection system that provides integrity between assembled components. A series of experimental tests are carried out including flexural tests on a single panel, on two and three connected panels, and on the assembled floor prototype. The behaviour of the panels is analysed when they are not considered part of the GFRP framed structure, namely the failure mechanisms and the efficiency of the proposed connection system between the panels. The performance of the floor prototype to support typical load conditions of residential houses is also assessed. Additionally, an analytical model was used to deeper study the behavior of the developed sandwich panels, connection system and the modular floor prototype. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work is part of the research project ClickHouse-Development of a prefabricated emergency house prototype made of composites materials, involving the company ALTO - Perfis Pultrudidos, Lda., CERis/Instituto Superior Tecnico and ISISE/University of Minho, supported by FEDER funds through the Operational Program for Competitiveness Factors - COMPETE and the Portuguese National Agency of Innovation (ADI) - project no. 38967. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof Journal of Composite Materials es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Emergency house es_ES
dc.subject Composite materials es_ES
dc.subject GFRP pultruded profiles es_ES
dc.subject Sandwich panels es_ES
dc.subject GFRP skins es_ES
dc.subject PU foam core es_ES
dc.subject.classification INGENIERIA DEL TERRENO es_ES
dc.title Composite modular floor prototype for emergency housing applications:Experimental and analytical approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/0021998317733318 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANI//COMPETE-38967/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería del Terreno - Departament d'Enginyeria del Terreny es_ES
dc.description.bibliographicCitation Abdolpour, H.; Garzón-Roca, J.; Escusa, G.; Sena-Cruz, J.; Barros, J.; Valente, I. (2018). Composite modular floor prototype for emergency housing applications:Experimental and analytical approach. Journal of Composite Materials. 52(13):1747-1764. https://doi.org/10.1177/0021998317733318 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/0021998317733318 es_ES
dc.description.upvformatpinicio 1747 es_ES
dc.description.upvformatpfin 1764 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 52 es_ES
dc.description.issue 13 es_ES
dc.relation.pasarela S\343654 es_ES
dc.contributor.funder Agência Nacional de Inovação, Portugal es_ES
dc.contributor.funder European Regional Development Fund
dc.description.references Johnson, C. (2007). Impacts of prefabricated temporary housing after disasters: 1999 earthquakes in Turkey. Habitat International, 31(1), 36-52. doi:10.1016/j.habitatint.2006.03.002 es_ES
dc.description.references Arslan, H., & Cosgun, N. (2008). Reuse and recycle potentials of the temporary houses after occupancy: Example of Duzce, Turkey. Building and Environment, 43(5), 702-709. doi:10.1016/j.buildenv.2007.01.051 es_ES
dc.description.references Dodoo, A., & Gustavsson, L. (2013). Life cycle primary energy use and carbon footprint of wood-frame conventional and passive houses with biomass-based energy supply. Applied Energy, 112, 834-842. doi:10.1016/j.apenergy.2013.04.008 es_ES
dc.description.references Datin, P. L., & Prevatt, D. O. (2013). Using instrumented small-scale models to study structural load paths in wood-framed buildings. Engineering Structures, 54, 47-56. doi:10.1016/j.engstruct.2013.03.039 es_ES
dc.description.references Imperadori, M., Salvalai, G., & Pusceddu, C. (2014). Air Shelter House Technology and its Application to Shelter Units: the Case of Scaffold House and Cardboard Shelter Installations. Procedia Economics and Finance, 18, 552-559. doi:10.1016/s2212-5671(14)00975-7 es_ES
dc.description.references Ljunggren, F., & Ågren, A. (2011). Potential solutions to improved sound performance of volume based lightweight multi-storey timber buildings. Applied Acoustics, 72(4), 231-240. doi:10.1016/j.apacoust.2010.11.007 es_ES
dc.description.references Winandy, J. E., Hunt, J. F., Turk, C., & Anderson, J. R. (2006). Emergency housing systems from three-dimensional engineered fiberboard : temporary building systems for lightweight, portable, easy-to-assemble, reusable, recyclable, and biodegradable structures. doi:10.2737/fpl-gtr-166 es_ES
dc.description.references Kootsookos, A., & Burchill, P. . (2004). The effect of the degree of cure on the corrosion resistance of vinyl ester/glass fibre composites. Composites Part A: Applied Science and Manufacturing, 35(4), 501-508. doi:10.1016/j.compositesa.2003.08.010 es_ES
dc.description.references Nguyen, C. H., Chandrashekhara, K., & Birman, V. (2012). Multifunctional thermal barrier coating in aerospace sandwich panels. Mechanics Research Communications, 39(1), 35-43. doi:10.1016/j.mechrescom.2011.10.003 es_ES
dc.description.references Allard, J. F., & Atalla, N. (2009). Propagation of Sound in Porous Media. doi:10.1002/9780470747339 es_ES
dc.description.references Sousa, J. M., Correia, J. R., Cabral-Fonseca, S., & Diogo, A. C. (2014). Effects of thermal cycles on the mechanical response of pultruded GFRP profiles used in civil engineering applications. Composite Structures, 116, 720-731. doi:10.1016/j.compstruct.2014.06.008 es_ES
dc.description.references Correia, J. R., Cabral-Fonseca, S., Branco, F. A., Ferreira, J. G., Eusébio, M. I., & Rodrigues, M. P. (2006). Durability of pultruded glass-fiber-reinforced polyester profiles for structural applications. Mechanics of Composite Materials, 42(4), 325-338. doi:10.1007/s11029-006-0042-3 es_ES
dc.description.references Rizkalla, S., Lucier, G., & Dawood, M. (2012). Innovative Use of FRP for the Precast Concrete Industry. Advances in Structural Engineering, 15(4), 565-574. doi:10.1260/1369-4332.15.4.565 es_ES
dc.description.references Oppe, M. W., & Knippers, J. (2011). Application of bolted connections in fibre-reinforced polymers. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 164(5), 321-332. doi:10.1680/stbu.2011.164.5.321 es_ES
dc.description.references Shawkat, W., Honickman, H., & Fam, A. (2008). Investigation of a Novel Composite Cladding Wall Panel in Flexure. Journal of Composite Materials, 42(3), 315-330. doi:10.1177/0021998307087965 es_ES
dc.description.references Sharaf, T., Shawkat, W., & Fam, A. (2010). Structural Performance of Sandwich Wall Panels with Different Foam Core Densities in One-way Bending. Journal of Composite Materials, 44(19), 2249-2263. doi:10.1177/0021998310369577 es_ES
dc.description.references Correia, J. R., Garrido, M., Gonilha, J. A., Branco, F. A., & Reis, L. G. (2012). GFRP sandwich panels with PU foam and PP honeycomb cores for civil engineering structural applications. International Journal of Structural Integrity, 3(2), 127-147. doi:10.1108/17579861211235165 es_ES
dc.description.references Keller, T., Haas, C., & Vallée, T. (2008). Structural Concept, Design, and Experimental Verification of a Glass Fiber-Reinforced Polymer Sandwich Roof Structure. Journal of Composites for Construction, 12(4), 454-468. doi:10.1061/(asce)1090-0268(2008)12:4(454) es_ES
dc.description.references Mousa, M. A., & Uddin, N. (2011). Global buckling of composite structural insulated wall panels. Materials & Design, 32(2), 766-772. doi:10.1016/j.matdes.2010.07.026 es_ES
dc.description.references Garrido, M., Correia, J. R., Keller, T., & Branco, F. A. (2015). Adhesively bonded connections between composite sandwich floor panels for building rehabilitation. Composite Structures, 134, 255-268. doi:10.1016/j.compstruct.2015.08.080 es_ES
dc.description.references Zenkert, D., Shipsha, A., & Persson, K. (2004). Static indentation and unloading response of sandwich beams. Composites Part B: Engineering, 35(6-8), 511-522. doi:10.1016/j.compositesb.2003.09.006 es_ES
dc.description.references Petras, A., & Sutcliffe, M. P. F. (1999). Indentation resistance of sandwich beams. Composite Structures, 46(4), 413-424. doi:10.1016/s0263-8223(99)00109-9 es_ES
dc.description.references Rizov, V., Shipsha, A., & Zenkert, D. (2005). Indentation study of foam core sandwich composite panels. Composite Structures, 69(1), 95-102. doi:10.1016/j.compstruct.2004.05.013 es_ES
dc.description.references Petras, A., & Sutcliffe, M. P. . (2000). Indentation failure analysis of sandwich beams. Composite Structures, 50(3), 311-318. doi:10.1016/s0263-8223(00)00122-7 es_ES
dc.description.references Borsellino, C., Calabrese, L., & Valenza, A. (2004). Experimental and numerical evaluation of sandwich composite structures. Composites Science and Technology, 64(10-11), 1709-1715. doi:10.1016/j.compscitech.2004.01.003 es_ES
dc.description.references Fam, A., & Sharaf, T. (2010). Flexural performance of sandwich panels comprising polyurethane core and GFRP skins and ribs of various configurations. Composite Structures, 92(12), 2927-2935. doi:10.1016/j.compstruct.2010.05.004 es_ES
dc.description.references Carlsson, L. A., & Kardomateas, G. A. (2011). Structural and Failure Mechanics of Sandwich Composites. Solid Mechanics and Its Applications. doi:10.1007/978-1-4020-3225-7 es_ES
dc.description.references Eskandari, H. (2003). The effect of shear deformation on material selection for bending components. Materials & Design, 24(2), 143-149. doi:10.1016/s0261-3069(02)00125-5 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem