Aguilar, M., Qi, X. Y., Huang, H., Comtois, P., & Nattel, S. (2014). Fibroblast Electrical Remodeling in Heart Failure and Potential Effects on Atrial Fibrillation. Biophysical Journal, 107(10), 2444-2455. doi:10.1016/j.bpj.2014.10.014
R. ALPERT, N., HASENFUSS, G., J. LEAVITT, B., P. ITTLEMAN, F., PIESKE, B., & A. MULIERI, L. (2000). A Mechanistic Analysis of Reduced Mechanical Performance in Human Heart Failure. Japanese Heart Journal, 41(2), 103-116. doi:10.1536/jhj.41.103
Bers, D. M. (2000). Calcium Fluxes Involved in Control of Cardiac Myocyte Contraction. Circulation Research, 87(4), 275-281. doi:10.1161/01.res.87.4.275
[+]
Aguilar, M., Qi, X. Y., Huang, H., Comtois, P., & Nattel, S. (2014). Fibroblast Electrical Remodeling in Heart Failure and Potential Effects on Atrial Fibrillation. Biophysical Journal, 107(10), 2444-2455. doi:10.1016/j.bpj.2014.10.014
R. ALPERT, N., HASENFUSS, G., J. LEAVITT, B., P. ITTLEMAN, F., PIESKE, B., & A. MULIERI, L. (2000). A Mechanistic Analysis of Reduced Mechanical Performance in Human Heart Failure. Japanese Heart Journal, 41(2), 103-116. doi:10.1536/jhj.41.103
Bers, D. M. (2000). Calcium Fluxes Involved in Control of Cardiac Myocyte Contraction. Circulation Research, 87(4), 275-281. doi:10.1161/01.res.87.4.275
Britton, O. J., Bueno-Orovio, A., Virág, L., Varró, A., & Rodriguez, B. (2017). The Electrogenic Na+/K+ Pump Is a Key Determinant of Repolarization Abnormality Susceptibility in Human Ventricular Cardiomyocytes: A Population-Based Simulation Study. Frontiers in Physiology, 8. doi:10.3389/fphys.2017.00278
Brown, T. R., Krogh-Madsen, T., & Christini, D. J. (2016). Illuminating Myocyte-Fibroblast Homotypic and Heterotypic Gap Junction Dynamics Using Dynamic Clamp. Biophysical Journal, 111(4), 785-797. doi:10.1016/j.bpj.2016.06.042
Cabo, C., & Boyden, P. A. (2009). Extracellular Space Attenuates the Effect of Gap Junctional Remodeling on Wave Propagation: A Computational Study. Biophysical Journal, 96(8), 3092-3101. doi:10.1016/j.bpj.2009.01.014
Cartledge, J. E., Kane, C., Dias, P., Tesfom, M., Clarke, L., Mckee, B., … Terracciano, C. M. (2015). Functional crosstalk between cardiac fibroblasts and adult cardiomyocytes by soluble mediators. Cardiovascular Research, 105(3), 260-270. doi:10.1093/cvr/cvu264
Chen, J.-B., Tao, R., Sun, H.-Y., Tse, H.-F., Lau, C.-P., & Li, G.-R. (2009). Multiple Ca2+signaling pathways regulate intracellular Ca2+activity in human cardiac fibroblasts. Journal of Cellular Physiology, n/a-n/a. doi:10.1002/jcp.22010
Chilton, L., Giles, W. R., & Smith, G. L. (2007). Evidence of intercellular coupling between co-cultured adult rabbit ventricular myocytes and myofibroblasts. The Journal of Physiology, 583(1), 225-236. doi:10.1113/jphysiol.2007.135038
Chilton, L., Ohya, S., Freed, D., George, E., Drobic, V., Shibukawa, Y., … Giles, W. R. (2005). K+ currents regulate the resting membrane potential, proliferation, and contractile responses in ventricular fibroblasts and myofibroblasts. American Journal of Physiology-Heart and Circulatory Physiology, 288(6), H2931-H2939. doi:10.1152/ajpheart.01220.2004
Cummins, M. A., Dalal, P. J., Bugana, M., Severi, S., & Sobie, E. A. (2014). Comprehensive Analyses of Ventricular Myocyte Models Identify Targets Exhibiting Favorable Rate Dependence. PLoS Computational Biology, 10(3), e1003543. doi:10.1371/journal.pcbi.1003543
Drouin, E., Lande, G., & Charpentier, F. (1998). Amiodarone reduces transmural heterogeneity of repolarization in the human heart. Journal of the American College of Cardiology, 32(4), 1063-1067. doi:10.1016/s0735-1097(98)00330-1
Fukuta, H., & Little, W. C. (2007). Contribution of Systolic and Diastolic Abnormalities to Heart Failure With a Normal and a Reduced Ejection Fraction. Progress in Cardiovascular Diseases, 49(4), 229-240. doi:10.1016/j.pcad.2006.08.009
Gaudesius, G., Miragoli, M., Thomas, S. P., & Rohr, S. (2003). Coupling of Cardiac Electrical Activity Over Extended Distances by Fibroblasts of Cardiac Origin. Circulation Research, 93(5), 421-428. doi:10.1161/01.res.0000089258.40661.0c
Gomez, J. F., Cardona, K., Martinez, L., Saiz, J., & Trenor, B. (2014). Electrophysiological and Structural Remodeling in Heart Failure Modulate Arrhythmogenesis. 2D Simulation Study. PLoS ONE, 9(7), e103273. doi:10.1371/journal.pone.0103273
Gomez, J. F., Cardona, K., Romero, L., Ferrero, J. M., & Trenor, B. (2014). Electrophysiological and Structural Remodeling in Heart Failure Modulate Arrhythmogenesis. 1D Simulation Study. PLoS ONE, 9(9), e106602. doi:10.1371/journal.pone.0106602
Greisas, A., & Zlochiver, S. (2016). The Multi-Domain Fibroblast/Myocyte Coupling in the Cardiac Tissue: A Theoretical Study. Cardiovascular Engineering and Technology, 7(3), 290-304. doi:10.1007/s13239-016-0266-x
Jacquemet, V., & Henriquez, C. S. (2008). Loading effect of fibroblast-myocyte coupling on resting potential, impulse propagation, and repolarization: insights from a microstructure model. American Journal of Physiology-Heart and Circulatory Physiology, 294(5), H2040-H2052. doi:10.1152/ajpheart.01298.2007
Li, Y., Asfour, H., & Bursac, N. (2017). Age-dependent functional crosstalk between cardiac fibroblasts and cardiomyocytes in a 3D engineered cardiac tissue. Acta Biomaterialia, 55, 120-130. doi:10.1016/j.actbio.2017.04.027
Lou, Q., Janks, D. L., Holzem, K. M., Lang, D., Onal, B., Ambrosi, C. M., … Efimov, I. R. (2012). Right ventricular arrhythmogenesis in failing human heart: the role of conduction and repolarization remodeling. American Journal of Physiology-Heart and Circulatory Physiology, 303(12), H1426-H1434. doi:10.1152/ajpheart.00457.2012
Lyon, A. R., MacLeod, K. T., Zhang, Y., Garcia, E., Kanda, G. K., Lab, M. J., … Gorelik, J. (2009). Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart. Proceedings of the National Academy of Sciences, 106(16), 6854-6859. doi:10.1073/pnas.0809777106
Andrew MacCannell, K., Bazzazi, H., Chilton, L., Shibukawa, Y., Clark, R. B., & Giles, W. R. (2007). A Mathematical Model of Electrotonic Interactions between Ventricular Myocytes and Fibroblasts. Biophysical Journal, 92(11), 4121-4132. doi:10.1529/biophysj.106.101410
Majumder, R., Nayak, A. R., & Pandit, R. (2012). Nonequilibrium Arrhythmic States and Transitions in a Mathematical Model for Diffuse Fibrosis in Human Cardiac Tissue. PLoS ONE, 7(10), e45040. doi:10.1371/journal.pone.0045040
Mayourian, J., Savizky, R. M., Sobie, E. A., & Costa, K. D. (2016). Modeling Electrophysiological Coupling and Fusion between Human Mesenchymal Stem Cells and Cardiomyocytes. PLOS Computational Biology, 12(7), e1005014. doi:10.1371/journal.pcbi.1005014
Miragoli, M., Gaudesius, G., & Rohr, S. (2006). Electrotonic Modulation of Cardiac Impulse Conduction by Myofibroblasts. Circulation Research, 98(6), 801-810. doi:10.1161/01.res.0000214537.44195.a3
Mora, M. T., Ferrero, J. M., Romero, L., & Trenor, B. (2017). Sensitivity analysis revealing the effect of modulating ionic mechanisms on calcium dynamics in simulated human heart failure. PLOS ONE, 12(11), e0187739. doi:10.1371/journal.pone.0187739
Morotti, S., Nieves-Cintrón, M., Nystoriak, M. A., Navedo, M. F., & Grandi, E. (2017). Predominant contribution of L-type Cav1.2 channel stimulation to impaired intracellular calcium and cerebral artery vasoconstriction in diabetic hyperglycemia. Channels, 11(4), 340-346. doi:10.1080/19336950.2017.1293220
Muszkiewicz, A., Britton, O. J., Gemmell, P., Passini, E., Sánchez, C., Zhou, X., … Rodriguez, B. (2016). Variability in cardiac electrophysiology: Using experimentally-calibrated populations of models to move beyond the single virtual physiological human paradigm. Progress in Biophysics and Molecular Biology, 120(1-3), 115-127. doi:10.1016/j.pbiomolbio.2015.12.002
Nguyen, T. P., Xie, Y., Garfinkel, A., Qu, Z., & Weiss, J. N. (2011). Arrhythmogenic consequences of myofibroblast–myocyte coupling. Cardiovascular Research, 93(2), 242-251. doi:10.1093/cvr/cvr292
Nivala, M., Song, Z., Weiss, J. N., & Qu, Z. (2015). T-tubule disruption promotes calcium alternans in failing ventricular myocytes: Mechanistic insights from computational modeling. Journal of Molecular and Cellular Cardiology, 79, 32-41. doi:10.1016/j.yjmcc.2014.10.018
O’Hara, T., Virág, L., Varró, A., & Rudy, Y. (2011). Simulation of the Undiseased Human Cardiac Ventricular Action Potential: Model Formulation and Experimental Validation. PLoS Computational Biology, 7(5), e1002061. doi:10.1371/journal.pcbi.1002061
Ozdemir, S., Bito, V., Holemans, P., Vinet, L., Mercadier, J.-J., Varro, A., & Sipido, K. R. (2008). Pharmacological Inhibition of Na/Ca Exchange Results in Increased Cellular Ca2+Load Attributable to the Predominance of Forward Mode Block. Circulation Research, 102(11), 1398-1405. doi:10.1161/circresaha.108.173922
Péréon, Y., Demolombe, S., Baró, I., Drouin, E., Charpentier, F., & Escande, D. (2000). Differential expression of KvLQT1 isoforms across the human ventricular wall. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H1908-H1915. doi:10.1152/ajpheart.2000.278.6.h1908
Piacentino, V., Weber, C. R., Chen, X., Weisser-Thomas, J., Margulies, K. B., Bers, D. M., & Houser, S. R. (2003). Cellular Basis of Abnormal Calcium Transients of Failing Human Ventricular Myocytes. Circulation Research, 92(6), 651-658. doi:10.1161/01.res.0000062469.83985.9b
Rocchetti, M., Alemanni, M., Mostacciuolo, G., Barassi, P., Altomare, C., Chisci, R., … Zaza, A. (2008). Modulation of Sarcoplasmic Reticulum Function by PST2744 [Istaroxime; (E,Z)-3-((2-Aminoethoxy)imino) Androstane-6,17-dione Hydrochloride)] in a Pressure-Overload Heart Failure Model. Journal of Pharmacology and Experimental Therapeutics, 326(3), 957-965. doi:10.1124/jpet.108.138701
Romero, L., Carbonell, B., Trenor, B., Rodríguez, B., Saiz, J., & Ferrero, J. M. (2011). Systematic characterization of the ionic basis of rabbit cellular electrophysiology using two ventricular models. Progress in Biophysics and Molecular Biology, 107(1), 60-73. doi:10.1016/j.pbiomolbio.2011.06.012
Romero, L., Pueyo, E., Fink, M., & Rodríguez, B. (2009). Impact of ionic current variability on human ventricular cellular electrophysiology. American Journal of Physiology-Heart and Circulatory Physiology, 297(4), H1436-H1445. doi:10.1152/ajpheart.00263.2009
Rook, M. B., van Ginneken, A. C., de Jonge, B., el Aoumari, A., Gros, D., & Jongsma, H. J. (1992). Differences in gap junction channels between cardiac myocytes, fibroblasts, and heterologous pairs. American Journal of Physiology-Cell Physiology, 263(5), C959-C977. doi:10.1152/ajpcell.1992.263.5.c959
Sachse, F. B., Moreno, A. P., Seemann, G., & Abildskov, J. A. (2009). A Model of Electrical Conduction in Cardiac Tissue Including Fibroblasts. Annals of Biomedical Engineering, 37(5), 874-889. doi:10.1007/s10439-009-9667-4
Sanchez-Alonso, J. L., Bhargava, A., O’Hara, T., Glukhov, A. V., Schobesberger, S., Bhogal, N., … Gorelik, J. (2016). Microdomain-Specific Modulation of L-Type Calcium Channels Leads to Triggered Ventricular Arrhythmia in Heart Failure. Circulation Research, 119(8), 944-955. doi:10.1161/circresaha.116.308698
Savarese, G., & Lund, L. H. (2017). Global Public Health Burden of Heart Failure. Cardiac Failure Review, 03(01), 7. doi:10.15420/cfr.2016:25:2
Seidel, T., Salameh, A., & Dhein, S. (2010). A Simulation Study of Cellular Hypertrophy and Connexin Lateralization in Cardiac Tissue. Biophysical Journal, 99(9), 2821-2830. doi:10.1016/j.bpj.2010.09.010
Shannon, T. R., Ginsburg, K. S., & Bers, D. M. (2000). Potentiation of Fractional Sarcoplasmic Reticulum Calcium Release by Total and Free Intra-Sarcoplasmic Reticulum Calcium Concentration. Biophysical Journal, 78(1), 334-343. doi:10.1016/s0006-3495(00)76596-9
Sobie, E. A. (2009). Parameter Sensitivity Analysis in Electrophysiological Models Using Multivariable Regression. Biophysical Journal, 96(4), 1264-1274. doi:10.1016/j.bpj.2008.10.056
Sridhar, S., Vandersickel, N., & Panfilov, A. V. (2017). Effect of myocyte-fibroblast coupling on the onset of pathological dynamics in a model of ventricular tissue. Scientific Reports, 7(1). doi:10.1038/srep40985
Tamayo, M., Manzanares, E., Bas, M., Martín-Nunes, L., Val-Blasco, A., Jesús Larriba, M., … Delgado, C. (2017). Calcitriol (1,25-dihydroxyvitamin D3) increases L-type calcium current via protein kinase A signaling and modulates calcium cycling and contractility in isolated mouse ventricular myocytes. Heart Rhythm, 14(3), 432-439. doi:10.1016/j.hrthm.2016.12.013
Trayanova, N. A., & Chang, K. C. (2016). How computer simulations of the human heart can improve anti-arrhythmia therapy. The Journal of Physiology, 594(9), 2483-2502. doi:10.1113/jp270532
Trenor, B., Cardona, K., Gomez, J. F., Rajamani, S., Ferrero, J. M., Belardinelli, L., & Saiz, J. (2012). Simulation and Mechanistic Investigation of the Arrhythmogenic Role of the Late Sodium Current in Human Heart Failure. PLoS ONE, 7(3), e32659. doi:10.1371/journal.pone.0032659
Walmsley, J., Rodriguez, J. F., Mirams, G. R., Burrage, K., Efimov, I. R., & Rodriguez, B. (2013). mRNA Expression Levels in Failing Human Hearts Predict Cellular Electrophysiological Remodeling: A Population-Based Simulation Study. PLoS ONE, 8(2), e56359. doi:10.1371/journal.pone.0056359
Xie, Y., Garfinkel, A., Camelliti, P., Kohl, P., Weiss, J. N., & Qu, Z. (2009). Effects of fibroblast-myocyte coupling on cardiac conduction and vulnerability to reentry: A computational study. Heart Rhythm, 6(11), 1641-1649. doi:10.1016/j.hrthm.2009.08.003
Xie, Y., Garfinkel, A., Weiss, J. N., & Qu, Z. (2009). Cardiac alternans induced by fibroblast-myocyte coupling: mechanistic insights from computational models. American Journal of Physiology-Heart and Circulatory Physiology, 297(2), H775-H784. doi:10.1152/ajpheart.00341.2009
Zhan, H., Xia, L., Shou, G., Zang, Y., Liu, F., & Crozier, S. (2014). Fibroblast proliferation alters cardiac excitation conduction and contraction: a computational study. Journal of Zhejiang University SCIENCE B, 15(3), 225-242. doi:10.1631/jzus.b1300156
Zhou, X., Bueno-Orovio, A., Orini, M., Hanson, B., Hayward, M., Taggart, P., … Rodriguez, B. (2016). In Vivo and In Silico Investigation Into Mechanisms of Frequency Dependence of Repolarization Alternans in Human Ventricular Cardiomyocytes. Circulation Research, 118(2), 266-278. doi:10.1161/circresaha.115.307836
Zimik, S., & Pandit, R. (2016). Instability of spiral and scroll waves in the presence of a gradient in the fibroblast density: the effects of fibroblast–myocyte coupling. New Journal of Physics, 18(12), 123014. doi:10.1088/1367-2630/18/12/123014
Zlochiver, S., Muñoz, V., Vikstrom, K. L., Taffet, S. M., Berenfeld, O., & Jalife, J. (2008). Electrotonic Myofibroblast-to-Myocyte Coupling Increases Propensity to Reentrant Arrhythmias in Two-Dimensional Cardiac Monolayers. Biophysical Journal, 95(9), 4469-4480. doi:10.1529/biophysj.108.136473
Zou, J., Salarian, M., Chen, Y., Zhuo, Y., Brown, N. E., Hepler, J. R., & Yang, J. J. (2017). Direct visualization of interaction between calmodulin and connexin45. Biochemical Journal, 474(24), 4035-4051. doi:10.1042/bcj20170426
[-]