- -

Classifying brain metastases by their primary site of origin using a radiomics approach based on texture analysis: a feasibility study

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Classifying brain metastases by their primary site of origin using a radiomics approach based on texture analysis: a feasibility study

Show full item record

Ortiz-Ramón, R.; Larroza-Santacruz, A.; Ruiz-España, S.; Arana Fernandez De Moya, E.; Moratal, D. (2018). Classifying brain metastases by their primary site of origin using a radiomics approach based on texture analysis: a feasibility study. European Radiology. 28(11):4514-4523. https://doi.org/10.1007/s00330-018-5463-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/145873

Files in this item

Item Metadata

Title: Classifying brain metastases by their primary site of origin using a radiomics approach based on texture analysis: a feasibility study
Author: Ortiz-Ramón, Rafael Larroza-Santacruz, Andrés Ruiz-España, Silvia Arana Fernandez De Moya, Estanislao Moratal, David
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Issued date:
Abstract:
[EN] Objective To examine the capability of MRI texture analysis to differentiate the primary site of origin of brain metastases following a radiomics approach. Methods Sixty-seven untreated brain metastases (BM) were ...[+]
Subjects: Neoplasms , Unknown primary , Magnetic resonance imaging , Image processing , Computer-assisted , Biomarkers , Feasibility studies
Copyrigths: Reserva de todos los derechos
Source:
European Radiology. (issn: 0938-7994 )
DOI: 10.1007/s00330-018-5463-6
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s00330-018-5463-6
Thanks:
This work has been partially funded by the Spanish Ministerio de Economia y Competitividad (MINECO) and FEDER funds under Grant BFU2015-64380-C2-2-R. Rafael Ortiz-Ramon was supported by grant ACIF/2015/078 from the Conselleria ...[+]
Type: Artículo

References

Gavrilovic IT, Posner JB (2005) Brain metastases: epidemiology and pathophysiology. J Neurooncol 75:5–14

Stelzer KJ (2013) Epidemiology and prognosis of brain metastases. Surg Neurol Int 4:S192–S202

Soffietti R, Cornu P, Delattre JY et al (2006) EFNS Guidelines on diagnosis and treatment of brain metastases: report of an EFNS Task Force. Eur J Neurol 13:674–681 [+]
Gavrilovic IT, Posner JB (2005) Brain metastases: epidemiology and pathophysiology. J Neurooncol 75:5–14

Stelzer KJ (2013) Epidemiology and prognosis of brain metastases. Surg Neurol Int 4:S192–S202

Soffietti R, Cornu P, Delattre JY et al (2006) EFNS Guidelines on diagnosis and treatment of brain metastases: report of an EFNS Task Force. Eur J Neurol 13:674–681

Kaal ECA, Taphoorn MJB, Vecht CJ (2005) Symptomatic management and imaging of brain metastases. J Neurooncol 75:15–20

Nayak L, Lee EQ, Wen PY (2012) Epidemiology of brain metastases. Curr Oncol Rep 14:48–54

Bartelt S, Lutterbach J (2003) Brain metastases in patients with cancer of unknown primary. J Neurooncol 64:249–253

Agazzi S, Pampallona S, Pica A et al (2004) The origin of brain metastases in patients with an undiagnosed primary tumor. Acta Neurochir (Wien) 146:153–157

Pekmezci M, Perry A (2013) Neuropathology of brain metastases. Surg Neurol Int 4:245

Zakaria R, Das K, Bhojak M et al (2014) The role of magnetic resonance imaging in the management of brain metastases: diagnosis to prognosis. Cancer Imaging 14:1–8

Bekaert L, Emery E, Levallet G, Lechapt-Zalcman E (2017) Histopathologic diagnosis of brain metastases: current trends in management and future considerations. Brain Tumor Pathol 34:8–19

Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577

Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446

Yip SSF, Aerts HJWL (2016) Applications and limitations of radiomics. Phys Med Biol 61:R150–R166

Kumar V, Gu Y, Basu S et al (2012) Radiomics: the process and the challenges. Magn Reson Imaging 30:1234–1248

Castellano G, Bonilha L, Li LM, Cendes F (2004) Texture analysis of medical images. Clin Radiol 59:1061–1069

Kassner A, Thornhill RE (2010) Texture analysis: a review of neurologic MR imaging applications. AJNR Am J Neuroradiol 31:809–816

Mahmoud-Ghoneim D, Toussaint G, Constans JM, De Certaines JD (2003) Three dimensional texture analysis in MRI: a preliminary evaluation in gliomas. Magn Reson Imaging 21:983–987

Fetit AE, Novak J, Peet AC, Arvanitis TN (2015) Three-dimensional textural features of conventional MRI improve diagnostic classification of childhood brain tumors. NMR Biomed 28:1174–1184

Zacharaki EI, Wang S, Chawla S et al (2009) Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med 62:1609–1618

Georgiadis P, Cavouras D, Kalatzis I et al (2009) Enhancing the discrimination accuracy between metastases, gliomas and meningiomas on brain MRI by volumetric textural features and ensemble pattern recognition methods. Magn Reson Imaging 27:120–130

Larroza A, Moratal D, Paredes-Sánchez A et al (2015) Support vector machine classification of brain metastasis and radiation necrosis based on texture analysis in MRI. J Magn Reson Imaging 42:1362–1368

Li Z, Mao Y, Li H et al (2016) Differentiating brain metastases from different pathological types of lung cancers using texture analysis of T1 postcontrast MR. Magn Reson Med 76:1410–1419

Fink KR, Fink JR (2013) Imaging of brain metastases. Surg Neurol Int 4:S209–S219

Larroza A, Bodí V, Moratal D (2016) Texture analysis in magnetic resonance imaging: review and considerations for future applications. In: Assessment of cellular and organ function and dysfunction using direct and derived MRI methodologies. InTech, Rijeka, Croatia, pp 75–106

Leite M, Rittner L, Appenzeller S et al (2015) Etiology-based classification of brain white matter hyperintensity on magnetic resonance imaging. J Med Imaging 2:14002

Mahmoud-Ghoneim D, Alkaabi MK, De Certaines JD, Goettsche F-M (2008) The impact of image dynamic range on texture classification of brain white matter. BMC Med Imaging 8:1–8

Depeursinge A, Foncubierta-Rodriguez A, Van De Ville D, Müller H (2014) Three-dimensional solid texture analysis in biomedical imaging: review and opportunities. Med Image Anal 18:176–196

Ellingson BM, Bendszus M, Boxerman J et al (2015) Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials. Neuro Oncol 17:1188–1198

Mayerhoefer ME, Breitenseher MJ, Kramer J et al (2005) Texture analysis for tissue discrimination on T1-weighted MR images of the knee joint in a multicenter study: Transferability of texture features and comparison of feature selection methods and classifiers. J Magn Reson Imaging 22:674–680

Waugh SA, Lerski RA, Bidaut L, Thompson AM (2011) The influence of field strength and different clinical breast MRI protocols on the outcome of texture analysis using foam phantoms. Med Phys 38:5058–5066

Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10:266–277

Collewet G, Strzelecki M, Mariette F (2004) Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn Reson Imaging 22:81–91

Gibbs P, Turnbull LW (2003) Textural analysis of contrast-enhanced MR images of the breast. Magn Reson Med 50:92–98

Vallières M, Freeman CR, Skamene SR, El Naqa I (2015) A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol 60:5471–5496

Kuhn M, Johnson K (2013) Data pre-processing. In: Applied predictive modeling, 1st ed. Springer, New York, NY, pp 27–59

Fernández-Delgado M, Cernadas E, Barro S et al (2014) Do we need hundreds of classifiers to solve real world classification problems? J Mach Learn Res 15:3133–3181

Caruana R, Karampatziakis N, Yessenalina A (2008) An empirical evaluation of supervised learning in high dimensions. In: Proceedings of the 25th international conference on Machine learning - ICML ’08. ACM Press, Helsinki, Finland, pp 96–103

Kuhn M, Johnson K (2013) Over-fitting and model tuning. In: Applied predictive modeling, 1st ed. Springer, New York, NY, pp 61–92

Kuhn M, Johnson K (2013) An introduction to feature selection. In: Applied predictive modeling, 1st ed. Springer, New York, NY, pp 487–519

Ambroise C, McLachlan GJ (2002) Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Natl Acad Sci U S A 99:6562–6566

Provost F, Domingos P (2003) Tree induction for probability-based ranking. Mach Learn 52:199–215

Kuhn M (2008) Building predictive models in R using the caret package. J Stat Softw 28:1–26

Ortiz-Ramon R, Larroza A, Arana E, Moratal D (2017) Identifying the primary site of origin of MRI brain metastases from lung and breast cancer following a 2D radiomics approach. In: 2017 I.E. 14th International Symposium on Biomedical Imaging (ISBI 2017). Melbourne, VIC, pp 1213–1216

Ortiz-Ramon R, Larroza A, Arana E, Moratal D (2017) A radiomics evaluation of 2D and 3D MRI texture features to classify brain metastases from lung cancer and melanoma. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Seogwipo, pp 493–496

Béresová M, Larroza A, Arana E, et al (2017) 2D and 3D texture analysis to differentiate brain metastases on MR images: proceed with caution. MAGMA 1–10

Ahmed A, Gibbs P, Pickles M, Turnbull L (2013) Texture analysis in assessment and prediction of chemotherapy response in breast cancer. J Magn Reson Imaging 38:89–101

Chen W, Giger ML, Li H et al (2007) Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images. Magn Reson Med 58:562–571

[-]

This item appears in the following Collection(s)

Show full item record