Mostrar el registro sencillo del ítem
dc.contributor.author | Porcel, R | es_ES |
dc.contributor.author | Bustamante-González, Antonio Javier | es_ES |
dc.contributor.author | Ros, Roc | es_ES |
dc.contributor.author | Serrano Salom, Ramón | es_ES |
dc.contributor.author | Mulet, José Miguel | es_ES |
dc.date.accessioned | 2020-06-11T03:33:04Z | |
dc.date.available | 2020-06-11T03:33:04Z | |
dc.date.issued | 2018-12 | es_ES |
dc.identifier.issn | 0140-7791 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/145984 | |
dc.description.abstract | [EN] In this report we have identified BvCOLD1, a novel aquaporin from sugar beet (Beta vulgaris) which is only conserved in the Chenopodioideae family. BvCOLD1 is expressed in all plant organs investigated and located in the endoplasmic reticulum. Transport experiments in yeast indicated that BvCOLD1 is able to transport glycerol and boron, the most limiting oligoelement for sugar beet cultivation. Overexpression of BvCOLD1 in Arabidopsis thaliana plants conferred tolerance to cold, to different abiotic stresses and the ability to grow under boron limiting conditions, therefore this novel aquaporin may be an important target to design new crops with enhanced boron homeostasis and abiotic stress tolerance. | es_ES |
dc.description.sponsorship | Ministerio de Economia y Competitividad, Grant/Award Number: BIO2016-77776-P; Secretaria de Estado de Investigacion, Desarrollo e Innovacion, Grant/Award Number: AGL2013-47886-R; Direccion General Investigacion Cientifica; MINECO, Grant/Award Numbers: BIO2014-61826 and BIO2016-77776-P; Universitat Politecnica de Valencia, Grant/Award Number: PAID-06-10-1496 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Blackwell Publishing | es_ES |
dc.relation.ispartof | Plant Cell & Environment | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Aquaporina | es_ES |
dc.subject | Estrés abiótico | es_ES |
dc.subject | Boro | es_ES |
dc.subject | Remolacha | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | BvCOLD1: A novel aquaporin from sugar beet (Beta vulgaris L.) involved in boron homeostasis and abiotic stress | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/pce.13416 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIO2014-61826-EXP/ES/OPTIMIZACION PARA USO A ESCALA INDUSTRIAL DE UN SISTEMA PARA LA EXPRESION SELECTIVA DE COMPUESTOS HETEROLOGOS EN CLOROPLASTOS MEDIADO POR NON-CODING RNAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2013-47886-R/ES/CARACTERIZACION DE LA RESPUESTA A ESTRES MULTIPLE REGULADA POR NCRNAS EN CUCURBITACEAS. BASES PARA EL DISEÑO DE ESTRATEGIAS INTEGRALES PARA LA PROTECCION DE CULTIVOS¿/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-10-1496/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIO2016-77776-P/ES/DESCIFRANDO LA REGULACION DE TRANSPORTADORES DE POTASIO EN PLANTAS Y LEVADURAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Porcel, R.; Bustamante-González, AJ.; Ros, R.; Serrano Salom, R.; Mulet, JM. (2018). BvCOLD1: A novel aquaporin from sugar beet (Beta vulgaris L.) involved in boron homeostasis and abiotic stress. Plant Cell & Environment. 41(12):2844-2857. https://doi.org/10.1111/pce.13416 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1111/pce.13416 | es_ES |
dc.description.upvformatpinicio | 2844 | es_ES |
dc.description.upvformatpfin | 2857 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 41 | es_ES |
dc.description.issue | 12 | es_ES |
dc.identifier.pmid | 30103284 | es_ES |
dc.relation.pasarela | S\367356 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Aroca, R., Amodeo, G., Fernández-Illescas, S., Herman, E. M., Chaumont, F., & Chrispeels, M. J. (2004). The Role of Aquaporins and Membrane Damage in Chilling and Hydrogen Peroxide Induced Changes in the Hydraulic Conductance of Maize Roots. Plant Physiology, 137(1), 341-353. doi:10.1104/pp.104.051045 | es_ES |
dc.description.references | Biancardi, E. (2005). Genetics and Breeding of Sugar Beet. doi:10.1201/9781482280296 | es_ES |
dc.description.references | Bienert, G. P., Møller, A. L. B., Kristiansen, K. A., Schulz, A., Møller, I. M., Schjoerring, J. K., & Jahn, T. P. (2006). Specific Aquaporins Facilitate the Diffusion of Hydrogen Peroxide across Membranes. Journal of Biological Chemistry, 282(2), 1183-1192. doi:10.1074/jbc.m603761200 | es_ES |
dc.description.references | Bissoli, G., Niñoles, R., Fresquet, S., Palombieri, S., Bueso, E., Rubio, L., … Serrano, R. (2012). Peptidyl-prolyl cis-trans isomerase ROF2 modulates intracellular pH homeostasis in Arabidopsis. The Plant Journal, 70(4), 704-716. doi:10.1111/j.1365-313x.2012.04921.x | es_ES |
dc.description.references | Boursiac, Y., Chen, S., Luu, D.-T., Sorieul, M., van den Dries, N., & Maurel, C. (2005). Early Effects of Salinity on Water Transport in Arabidopsis Roots. Molecular and Cellular Features of Aquaporin Expression. Plant Physiology, 139(2), 790-805. doi:10.1104/pp.105.065029 | es_ES |
dc.description.references | Brown, P. H., Bellaloui, N., Wimmer, M. A., Bassil, E. S., Ruiz, J., Hu, H., … Römheld, V. (2002). Boron in Plant Biology. Plant Biology, 4(2), 205-223. doi:10.1055/s-2002-25740 | es_ES |
dc.description.references | Camacho-Cristóbal, J. J., Rexach, J., & González-Fontes, A. (2008). Boron in Plants: Deficiency and Toxicity. Journal of Integrative Plant Biology, 50(10), 1247-1255. doi:10.1111/j.1744-7909.2008.00742.x | es_ES |
dc.description.references | Cava, F., de Pedro, M. A., Blas-Galindo, E., Waldo, G. S., Westblade, L. F., & Berenguer, J. (2008). Expression and use of superfolder green fluorescent protein at high temperatures in vivo: a tool to study extreme thermophile biology. Environmental Microbiology, 10(3), 605-613. doi:10.1111/j.1462-2920.2007.01482.x | es_ES |
dc.description.references | Dell, B., & Huang, L. (1997). Plant and Soil, 193(2), 103-120. doi:10.1023/a:1004264009230 | es_ES |
dc.description.references | Dewar, A. M., May, M. J., Woiwod, I. P., Haylock, L. A., Champion, G. T., Garner, B. H., … Pidgeon, J. D. (2003). A novel approach to the use of genetically modified herbicide tolerant crops for environmental benefit. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1513), 335-340. doi:10.1098/rspb.2002.2248 | es_ES |
dc.description.references | Dohm, J. C., Minoche, A. E., Holtgräwe, D., Capella-Gutiérrez, S., Zakrzewski, F., Tafer, H., … Himmelbauer, H. (2013). The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature, 505(7484), 546-549. doi:10.1038/nature12817 | es_ES |
dc.description.references | Duncan, D. B. (1955). Multiple Range and Multiple F Tests. Biometrics, 11(1), 1. doi:10.2307/3001478 | es_ES |
dc.description.references | Evans, E., & Messerschmidt, U. (2017). Review: Sugar beets as a substitute for grain for lactating dairy cattle. Journal of Animal Science and Biotechnology, 8(1). doi:10.1186/s40104-017-0154-8 | es_ES |
dc.description.references | Food and Agriculture Organization of the United Nations 2015 World agricultural statistics = Statistiques agricoles mondiales = Estadísticas agricolas mundiales | es_ES |
dc.description.references | Gietz, D., Jean, A. S., Woods, R. A., & Schiestl, R. H. (1992). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Research, 20(6), 1425-1425. doi:10.1093/nar/20.6.1425 | es_ES |
dc.description.references | Jahn, T. P., Møller, A. L. B., Zeuthen, T., Holm, L. M., Klaerke, D. A., Mohsin, B., … Schjoerring, J. K. (2004). Aquaporin homologues in plants and mammals transport ammonia. FEBS Letters, 574(1-3), 31-36. doi:10.1016/j.febslet.2004.08.004 | es_ES |
dc.description.references | KAY, R., CHAN, A., DALY, M., & MCPHERSON, J. (1987). Duplication of CaMV 35S Promoter Sequences Creates a Strong Enhancer for Plant Genes. Science, 236(4806), 1299-1302. doi:10.1126/science.236.4806.1299 | es_ES |
dc.description.references | Klebl, F., Wolf, M., & Sauer, N. (2003). A defect in the yeast plasma membrane urea transporter Dur3p is complemented by CpNIP1 , a Nod26-like protein from zucchini (Cucurbita pepo L.), and by Arabidopsis thaliana δ-TIP or γ-TIP. FEBS Letters, 547(1-3), 69-74. doi:10.1016/s0014-5793(03)00671-9 | es_ES |
dc.description.references | Kobayashi, M., Matoh, T., & Azuma, J. (1996). Two Chains of Rhamnogalacturonan II Are Cross-Linked by Borate-Diol Ester Bonds in Higher Plant Cell Walls. Plant Physiology, 110(3), 1017-1020. doi:10.1104/pp.110.3.1017 | es_ES |
dc.description.references | Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262 | es_ES |
dc.description.references | Maurel, C., Verdoucq, L., Luu, D.-T., & Santoni, V. (2008). Plant Aquaporins: Membrane Channels with Multiple Integrated Functions. Annual Review of Plant Biology, 59(1), 595-624. doi:10.1146/annurev.arplant.59.032607.092734 | es_ES |
dc.description.references | Moliterni, V. M. C., Paris, R., Onofri, C., Orrù, L., Cattivelli, L., Pacifico, D., … Mandolino, G. (2015). Early transcriptional changes in Beta vulgaris in response to low temperature. Planta, 242(1), 187-201. doi:10.1007/s00425-015-2299-z | es_ES |
dc.description.references | Mulet, J. M., Alemany, B., Ros, R., Calvete, J. J., & Serrano, R. (2004). Expression of a plant serine O-acetyltransferase inSaccharomyces cerevisiae confers osmotic tolerance and creates an alternative pathway for cysteine biosynthesis. Yeast, 21(4), 303-312. doi:10.1002/yea.1076 | es_ES |
dc.description.references | Muries, B., Faize, M., Carvajal, M., & Martínez-Ballesta, M. del C. (2011). Identification and differential induction of the expression of aquaporins by salinity in broccoli plants. Molecular BioSystems, 7(4), 1322. doi:10.1039/c0mb00285b | es_ES |
dc.description.references | Noguchi, K., Yasumori, M., Imai, T., Naito, S., Matsunaga, T., Oda, H., … Fujiwara, T. (1997). bor1-1, an Arabidopsis thaliana Mutant That Requires a High Level of Boron. Plant Physiology, 115(3), 901-906. doi:10.1104/pp.115.3.901 | es_ES |
dc.description.references | Nozawa, A., Takano, J., Kobayashi, M., von Wirén, N., & Fujiwara, T. (2006). Roles of BOR1, DUR3, and FPS1 in boron transport and tolerance inSaccharomyces cerevisiae. FEMS Microbiology Letters, 262(2), 216-222. doi:10.1111/j.1574-6968.2006.00395.x | es_ES |
dc.description.references | O’Neill, M. A., Warrenfeltz, D., Kates, K., Pellerin, P., Doco, T., Darvill, A. G., & Albersheim, P. (1996). Rhamnogalacturonan-II, a Pectic Polysaccharide in the Walls of Growing Plant Cell, Forms a Dimer That Is Covalently Cross-linked by a Borate Ester. Journal of Biological Chemistry, 271(37), 22923-22930. doi:10.1074/jbc.271.37.22923 | es_ES |
dc.description.references | Pang, Y., Li, L., Ren, F., Lu, P., Wei, P., Cai, J., … Wang, X. (2010). Overexpression of the tonoplast aquaporin AtTIP5;1 conferred tolerance to boron toxicity in Arabidopsis. Journal of Genetics and Genomics, 37(6), 389-397. doi:10.1016/s1673-8527(09)60057-6 | es_ES |
dc.description.references | Patankar, H. V., Al-Harrasi, I., Al-Yahyai, R., & Yaish, M. W. (2018). Identification of Candidate Genes Involved in the Salt Tolerance of Date Palm (Phoenix dactylifera L.) Based on a Yeast Functional Bioassay. DNA and Cell Biology, 37(6), 524-534. doi:10.1089/dna.2018.4159 | es_ES |
dc.description.references | Peiro, A., Izquierdo‐Garcia, A. C., Sanchez‐Navarro, J. A., Pallas, V., Mulet, J. M., & Aparicio, F. (2014). Patellins 3 and 6, two members of the P lant P atellin family, interact with the movement protein of A lfalfa mosaic virus and interfere with viral movement. Molecular Plant Pathology, 15(9), 881-891. doi:10.1111/mpp.12146 | es_ES |
dc.description.references | Porcel, R., Aroca, R., Azcón, R., & Ruiz-Lozano, J. M. (2006). PIP Aquaporin Gene Expression in Arbuscular Mycorrhizal Glycine max and Lactuca sativa Plants in Relation to Drought Stress Tolerance. Plant Molecular Biology, 60(3), 389-404. doi:10.1007/s11103-005-4210-y | es_ES |
dc.description.references | ROZEMA, J., BRUIN, J., & BROEKMAN, R. A. (1992). Effect of boron on the growth and mineral economy of some halophytes and non-halophytes. New Phytologist, 121(2), 249-256. doi:10.1111/j.1469-8137.1992.tb01111.x | es_ES |
dc.description.references | Sayle, R. (1995). RASMOL: biomolecular graphics for all. Trends in Biochemical Sciences, 20(9), 374-376. doi:10.1016/s0968-0004(00)89080-5 | es_ES |
dc.description.references | Serrano, R., Montesinos, C., Gaxiola, R., Ríos, G., Forment, J., Leube, M., … Ros, R. (2003). FUNCTIONAL GENOMICS OF SALT TOLERANCE: THE YEAST OVEREXPRESSION APPROACH. Acta Horticulturae, (609), 31-38. doi:10.17660/actahortic.2003.609.2 | es_ES |
dc.description.references | Shorrocks, V. M. (1997). Plant and Soil, 193(2), 121-148. doi:10.1023/a:1004216126069 | es_ES |
dc.description.references | Soto, G., Alleva, K., Mazzella, M. A., Amodeo, G., & Muschietti, J. P. (2008). AtTIP1;3andAtTIP5;1, the only highly expressed Arabidopsis pollen-specific aquaporins, transport water and urea. FEBS Letters, 582(29), 4077-4082. doi:10.1016/j.febslet.2008.11.002 | es_ES |
dc.description.references | Sreedharan, S., Shekhawat, U. K. S., & Ganapathi, T. R. (2015). Constitutive and stress-inducible overexpression of a native aquaporin gene (MusaPIP2;6) in transgenic banana plants signals its pivotal role in salt tolerance. Plant Molecular Biology, 88(1-2), 41-52. doi:10.1007/s11103-015-0305-2 | es_ES |
dc.description.references | Su, Y., Liang, W., Liu, Z., Wang, Y., Zhao, Y., Ijaz, B., & Hua, J. (2017). Overexpression of GhDof1 improved salt and cold tolerance and seed oil content in Gossypium hirsutum. Journal of Plant Physiology, 218, 222-234. doi:10.1016/j.jplph.2017.07.017 | es_ES |
dc.description.references | Takano, J., Noguchi, K., Yasumori, M., Kobayashi, M., Gajdos, Z., Miwa, K., … Fujiwara, T. (2002). Arabidopsis boron transporter for xylem loading. Nature, 420(6913), 337-340. doi:10.1038/nature01139 | es_ES |
dc.description.references | Tanaka, M., & Fujiwara, T. (2007). Physiological roles and transport mechanisms of boron: perspectives from plants. Pflügers Archiv - European Journal of Physiology, 456(4), 671-677. doi:10.1007/s00424-007-0370-8 | es_ES |
dc.description.references | Tanaka, M., Wallace, I. S., Takano, J., Roberts, D. M., & Fujiwara, T. (2008). NIP6;1 Is a Boric Acid Channel for Preferential Transport of Boron to Growing Shoot Tissues in Arabidopsis. The Plant Cell, 20(10), 2860-2875. doi:10.1105/tpc.108.058628 | es_ES |
dc.description.references | Törnroth-Horsefield, S., Wang, Y., Hedfalk, K., Johanson, U., Karlsson, M., Tajkhorshid, E., … Kjellbom, P. (2005). Structural mechanism of plant aquaporin gating. Nature, 439(7077), 688-694. doi:10.1038/nature04316 | es_ES |
dc.description.references | Uraguchi, S. (2014). Generation of boron-deficiency-tolerant tomato by overexpressing an Arabidopsis thaliana borate transporter AtBOR1. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00125 | es_ES |
dc.description.references | Vicent, I., Navarro, A., Mulet, J. M., Sharma, S., & Serrano, R. (2015). Uptake of inorganic phosphate is a limiting factor for Saccharomyces cerevisiae during growth at low temperatures. FEMS Yeast Research, 15(3). doi:10.1093/femsyr/fov008 | es_ES |
dc.description.references | Wallis, J. W., Chrebet, G., Brodsky, G., Rolfe, M., & Rothstein, R. (1989). A hyper-recombination mutation in S. cerevisiae identifies a novel eukaryotic topoisomerase. Cell, 58(2), 409-419. doi:10.1016/0092-8674(89)90855-6 | es_ES |
dc.description.references | Wieland, W. H., Lammers, A., Schots, A., & Orzáez, D. V. (2006). Plant expression of chicken secretory antibodies derived from combinatorial libraries. Journal of Biotechnology, 122(3), 382-391. doi:10.1016/j.jbiotec.2005.12.020 | es_ES |
dc.description.references | Wimmer, M. A., & Eichert, T. (2013). Review: Mechanisms for boron deficiency-mediated changes in plant water relations. Plant Science, 203-204, 25-32. doi:10.1016/j.plantsci.2012.12.012 | es_ES |
dc.description.references | Yu, G., Li, J., Sun, X., Liu, Y., Wang, X., Zhang, H., & Pan, H. (2017). Exploration for the Salinity Tolerance-Related Genes from Xero-Halophyte Atriplex canescens Exploiting Yeast Functional Screening System. International Journal of Molecular Sciences, 18(11), 2444. doi:10.3390/ijms18112444 | es_ES |
dc.description.references | Yuan, D., Li, W., Hua, Y., King, G. J., Xu, F., & Shi, L. (2017). Genome-Wide Identification and Characterization of the Aquaporin Gene Family and Transcriptional Responses to Boron Deficiency in Brassica napus. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01336 | es_ES |
dc.description.references | Zabed, H., Faruq, G., Sahu, J. N., Azirun, M. S., Hashim, R., & Nasrulhaq Boyce, A. (2014). Bioethanol Production from Fermentable Sugar Juice. The Scientific World Journal, 2014, 1-11. doi:10.1155/2014/957102 | es_ES |
dc.description.references | Zhang, Q., Chen, H., He, M., Zhao, Z., Cai, H., Ding, G., … Xu, F. (2017). The boron transporterBnaC4.BOR1;1cis critical for inflorescence development and fertility under boron limitation inBrassica napus. Plant, Cell & Environment, 40(9), 1819-1833. doi:10.1111/pce.12987 | es_ES |