- -

BvCOLD1: A novel aquaporin from sugar beet (Beta vulgaris L.) involved in boron homeostasis and abiotic stress

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

BvCOLD1: A novel aquaporin from sugar beet (Beta vulgaris L.) involved in boron homeostasis and abiotic stress

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Porcel, R es_ES
dc.contributor.author Bustamante-González, Antonio Javier es_ES
dc.contributor.author Ros, Roc es_ES
dc.contributor.author Serrano Salom, Ramón es_ES
dc.contributor.author Mulet, José Miguel es_ES
dc.date.accessioned 2020-06-11T03:33:04Z
dc.date.available 2020-06-11T03:33:04Z
dc.date.issued 2018-12 es_ES
dc.identifier.issn 0140-7791 es_ES
dc.identifier.uri http://hdl.handle.net/10251/145984
dc.description.abstract [EN] In this report we have identified BvCOLD1, a novel aquaporin from sugar beet (Beta vulgaris) which is only conserved in the Chenopodioideae family. BvCOLD1 is expressed in all plant organs investigated and located in the endoplasmic reticulum. Transport experiments in yeast indicated that BvCOLD1 is able to transport glycerol and boron, the most limiting oligoelement for sugar beet cultivation. Overexpression of BvCOLD1 in Arabidopsis thaliana plants conferred tolerance to cold, to different abiotic stresses and the ability to grow under boron limiting conditions, therefore this novel aquaporin may be an important target to design new crops with enhanced boron homeostasis and abiotic stress tolerance. es_ES
dc.description.sponsorship Ministerio de Economia y Competitividad, Grant/Award Number: BIO2016-77776-P; Secretaria de Estado de Investigacion, Desarrollo e Innovacion, Grant/Award Number: AGL2013-47886-R; Direccion General Investigacion Cientifica; MINECO, Grant/Award Numbers: BIO2014-61826 and BIO2016-77776-P; Universitat Politecnica de Valencia, Grant/Award Number: PAID-06-10-1496 es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof Plant Cell & Environment es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Aquaporina es_ES
dc.subject Estrés abiótico es_ES
dc.subject Boro es_ES
dc.subject Remolacha es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title BvCOLD1: A novel aquaporin from sugar beet (Beta vulgaris L.) involved in boron homeostasis and abiotic stress es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/pce.13416 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2014-61826-EXP/ES/OPTIMIZACION PARA USO A ESCALA INDUSTRIAL DE UN SISTEMA PARA LA EXPRESION SELECTIVA DE COMPUESTOS HETEROLOGOS EN CLOROPLASTOS MEDIADO POR NON-CODING RNAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2013-47886-R/ES/CARACTERIZACION DE LA RESPUESTA A ESTRES MULTIPLE REGULADA POR NCRNAS EN CUCURBITACEAS. BASES PARA EL DISEÑO DE ESTRATEGIAS INTEGRALES PARA LA PROTECCION DE CULTIVOS¿/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-10-1496/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2016-77776-P/ES/DESCIFRANDO LA REGULACION DE TRANSPORTADORES DE POTASIO EN PLANTAS Y LEVADURAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Porcel, R.; Bustamante-González, AJ.; Ros, R.; Serrano Salom, R.; Mulet, JM. (2018). BvCOLD1: A novel aquaporin from sugar beet (Beta vulgaris L.) involved in boron homeostasis and abiotic stress. Plant Cell & Environment. 41(12):2844-2857. https://doi.org/10.1111/pce.13416 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/pce.13416 es_ES
dc.description.upvformatpinicio 2844 es_ES
dc.description.upvformatpfin 2857 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 41 es_ES
dc.description.issue 12 es_ES
dc.identifier.pmid 30103284 es_ES
dc.relation.pasarela S\367356 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Aroca, R., Amodeo, G., Fernández-Illescas, S., Herman, E. M., Chaumont, F., & Chrispeels, M. J. (2004). The Role of Aquaporins and Membrane Damage in Chilling and Hydrogen Peroxide Induced Changes in the Hydraulic Conductance of Maize Roots. Plant Physiology, 137(1), 341-353. doi:10.1104/pp.104.051045 es_ES
dc.description.references Biancardi, E. (2005). Genetics and Breeding of Sugar Beet. doi:10.1201/9781482280296 es_ES
dc.description.references Bienert, G. P., Møller, A. L. B., Kristiansen, K. A., Schulz, A., Møller, I. M., Schjoerring, J. K., & Jahn, T. P. (2006). Specific Aquaporins Facilitate the Diffusion of Hydrogen Peroxide across Membranes. Journal of Biological Chemistry, 282(2), 1183-1192. doi:10.1074/jbc.m603761200 es_ES
dc.description.references Bissoli, G., Niñoles, R., Fresquet, S., Palombieri, S., Bueso, E., Rubio, L., … Serrano, R. (2012). Peptidyl-prolyl cis-trans isomerase ROF2 modulates intracellular pH homeostasis in Arabidopsis. The Plant Journal, 70(4), 704-716. doi:10.1111/j.1365-313x.2012.04921.x es_ES
dc.description.references Boursiac, Y., Chen, S., Luu, D.-T., Sorieul, M., van den Dries, N., & Maurel, C. (2005). Early Effects of Salinity on Water Transport in Arabidopsis Roots. Molecular and Cellular Features of Aquaporin Expression. Plant Physiology, 139(2), 790-805. doi:10.1104/pp.105.065029 es_ES
dc.description.references Brown, P. H., Bellaloui, N., Wimmer, M. A., Bassil, E. S., Ruiz, J., Hu, H., … Römheld, V. (2002). Boron in Plant Biology. Plant Biology, 4(2), 205-223. doi:10.1055/s-2002-25740 es_ES
dc.description.references Camacho-Cristóbal, J. J., Rexach, J., & González-Fontes, A. (2008). Boron in Plants: Deficiency and Toxicity. Journal of Integrative Plant Biology, 50(10), 1247-1255. doi:10.1111/j.1744-7909.2008.00742.x es_ES
dc.description.references Cava, F., de Pedro, M. A., Blas-Galindo, E., Waldo, G. S., Westblade, L. F., & Berenguer, J. (2008). Expression and use of superfolder green fluorescent protein at high temperatures in vivo: a tool to study extreme thermophile biology. Environmental Microbiology, 10(3), 605-613. doi:10.1111/j.1462-2920.2007.01482.x es_ES
dc.description.references Dell, B., & Huang, L. (1997). Plant and Soil, 193(2), 103-120. doi:10.1023/a:1004264009230 es_ES
dc.description.references Dewar, A. M., May, M. J., Woiwod, I. P., Haylock, L. A., Champion, G. T., Garner, B. H., … Pidgeon, J. D. (2003). A novel approach to the use of genetically modified herbicide tolerant crops for environmental benefit. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1513), 335-340. doi:10.1098/rspb.2002.2248 es_ES
dc.description.references Dohm, J. C., Minoche, A. E., Holtgräwe, D., Capella-Gutiérrez, S., Zakrzewski, F., Tafer, H., … Himmelbauer, H. (2013). The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature, 505(7484), 546-549. doi:10.1038/nature12817 es_ES
dc.description.references Duncan, D. B. (1955). Multiple Range and Multiple F Tests. Biometrics, 11(1), 1. doi:10.2307/3001478 es_ES
dc.description.references Evans, E., & Messerschmidt, U. (2017). Review: Sugar beets as a substitute for grain for lactating dairy cattle. Journal of Animal Science and Biotechnology, 8(1). doi:10.1186/s40104-017-0154-8 es_ES
dc.description.references Food and Agriculture Organization of the United Nations 2015 World agricultural statistics = Statistiques agricoles mondiales = Estadísticas agricolas mundiales es_ES
dc.description.references Gietz, D., Jean, A. S., Woods, R. A., & Schiestl, R. H. (1992). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Research, 20(6), 1425-1425. doi:10.1093/nar/20.6.1425 es_ES
dc.description.references Jahn, T. P., Møller, A. L. B., Zeuthen, T., Holm, L. M., Klaerke, D. A., Mohsin, B., … Schjoerring, J. K. (2004). Aquaporin homologues in plants and mammals transport ammonia. FEBS Letters, 574(1-3), 31-36. doi:10.1016/j.febslet.2004.08.004 es_ES
dc.description.references KAY, R., CHAN, A., DALY, M., & MCPHERSON, J. (1987). Duplication of CaMV 35S Promoter Sequences Creates a Strong Enhancer for Plant Genes. Science, 236(4806), 1299-1302. doi:10.1126/science.236.4806.1299 es_ES
dc.description.references Klebl, F., Wolf, M., & Sauer, N. (2003). A defect in the yeast plasma membrane urea transporter Dur3p is complemented by CpNIP1 , a Nod26-like protein from zucchini (Cucurbita pepo L.), and by Arabidopsis thaliana δ-TIP or γ-TIP. FEBS Letters, 547(1-3), 69-74. doi:10.1016/s0014-5793(03)00671-9 es_ES
dc.description.references Kobayashi, M., Matoh, T., & Azuma, J. (1996). Two Chains of Rhamnogalacturonan II Are Cross-Linked by Borate-Diol Ester Bonds in Higher Plant Cell Walls. Plant Physiology, 110(3), 1017-1020. doi:10.1104/pp.110.3.1017 es_ES
dc.description.references Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262 es_ES
dc.description.references Maurel, C., Verdoucq, L., Luu, D.-T., & Santoni, V. (2008). Plant Aquaporins: Membrane Channels with Multiple Integrated Functions. Annual Review of Plant Biology, 59(1), 595-624. doi:10.1146/annurev.arplant.59.032607.092734 es_ES
dc.description.references Moliterni, V. M. C., Paris, R., Onofri, C., Orrù, L., Cattivelli, L., Pacifico, D., … Mandolino, G. (2015). Early transcriptional changes in Beta vulgaris in response to low temperature. Planta, 242(1), 187-201. doi:10.1007/s00425-015-2299-z es_ES
dc.description.references Mulet, J. M., Alemany, B., Ros, R., Calvete, J. J., & Serrano, R. (2004). Expression of a plant serine O-acetyltransferase inSaccharomyces cerevisiae confers osmotic tolerance and creates an alternative pathway for cysteine biosynthesis. Yeast, 21(4), 303-312. doi:10.1002/yea.1076 es_ES
dc.description.references Muries, B., Faize, M., Carvajal, M., & Martínez-Ballesta, M. del C. (2011). Identification and differential induction of the expression of aquaporins by salinity in broccoli plants. Molecular BioSystems, 7(4), 1322. doi:10.1039/c0mb00285b es_ES
dc.description.references Noguchi, K., Yasumori, M., Imai, T., Naito, S., Matsunaga, T., Oda, H., … Fujiwara, T. (1997). bor1-1, an Arabidopsis thaliana Mutant That Requires a High Level of Boron. Plant Physiology, 115(3), 901-906. doi:10.1104/pp.115.3.901 es_ES
dc.description.references Nozawa, A., Takano, J., Kobayashi, M., von Wirén, N., & Fujiwara, T. (2006). Roles of BOR1, DUR3, and FPS1 in boron transport and tolerance inSaccharomyces cerevisiae. FEMS Microbiology Letters, 262(2), 216-222. doi:10.1111/j.1574-6968.2006.00395.x es_ES
dc.description.references O’Neill, M. A., Warrenfeltz, D., Kates, K., Pellerin, P., Doco, T., Darvill, A. G., & Albersheim, P. (1996). Rhamnogalacturonan-II, a Pectic Polysaccharide in the Walls of Growing Plant Cell, Forms a Dimer That Is Covalently Cross-linked by a Borate Ester. Journal of Biological Chemistry, 271(37), 22923-22930. doi:10.1074/jbc.271.37.22923 es_ES
dc.description.references Pang, Y., Li, L., Ren, F., Lu, P., Wei, P., Cai, J., … Wang, X. (2010). Overexpression of the tonoplast aquaporin AtTIP5;1 conferred tolerance to boron toxicity in Arabidopsis. Journal of Genetics and Genomics, 37(6), 389-397. doi:10.1016/s1673-8527(09)60057-6 es_ES
dc.description.references Patankar, H. V., Al-Harrasi, I., Al-Yahyai, R., & Yaish, M. W. (2018). Identification of Candidate Genes Involved in the Salt Tolerance of Date Palm (Phoenix dactylifera L.) Based on a Yeast Functional Bioassay. DNA and Cell Biology, 37(6), 524-534. doi:10.1089/dna.2018.4159 es_ES
dc.description.references Peiro, A., Izquierdo‐Garcia, A. C., Sanchez‐Navarro, J. A., Pallas, V., Mulet, J. M., & Aparicio, F. (2014). Patellins 3 and 6, two members of the P lant P atellin family, interact with the movement protein of A lfalfa mosaic virus and interfere with viral movement. Molecular Plant Pathology, 15(9), 881-891. doi:10.1111/mpp.12146 es_ES
dc.description.references Porcel, R., Aroca, R., Azcón, R., & Ruiz-Lozano, J. M. (2006). PIP Aquaporin Gene Expression in Arbuscular Mycorrhizal Glycine max and Lactuca  sativa Plants in Relation to Drought Stress Tolerance. Plant Molecular Biology, 60(3), 389-404. doi:10.1007/s11103-005-4210-y es_ES
dc.description.references ROZEMA, J., BRUIN, J., & BROEKMAN, R. A. (1992). Effect of boron on the growth and mineral economy of some halophytes and non-halophytes. New Phytologist, 121(2), 249-256. doi:10.1111/j.1469-8137.1992.tb01111.x es_ES
dc.description.references Sayle, R. (1995). RASMOL: biomolecular graphics for all. Trends in Biochemical Sciences, 20(9), 374-376. doi:10.1016/s0968-0004(00)89080-5 es_ES
dc.description.references Serrano, R., Montesinos, C., Gaxiola, R., Ríos, G., Forment, J., Leube, M., … Ros, R. (2003). FUNCTIONAL GENOMICS OF SALT TOLERANCE: THE YEAST OVEREXPRESSION APPROACH. Acta Horticulturae, (609), 31-38. doi:10.17660/actahortic.2003.609.2 es_ES
dc.description.references Shorrocks, V. M. (1997). Plant and Soil, 193(2), 121-148. doi:10.1023/a:1004216126069 es_ES
dc.description.references Soto, G., Alleva, K., Mazzella, M. A., Amodeo, G., & Muschietti, J. P. (2008). AtTIP1;3andAtTIP5;1, the only highly expressed Arabidopsis pollen-specific aquaporins, transport water and urea. FEBS Letters, 582(29), 4077-4082. doi:10.1016/j.febslet.2008.11.002 es_ES
dc.description.references Sreedharan, S., Shekhawat, U. K. S., & Ganapathi, T. R. (2015). Constitutive and stress-inducible overexpression of a native aquaporin gene (MusaPIP2;6) in transgenic banana plants signals its pivotal role in salt tolerance. Plant Molecular Biology, 88(1-2), 41-52. doi:10.1007/s11103-015-0305-2 es_ES
dc.description.references Su, Y., Liang, W., Liu, Z., Wang, Y., Zhao, Y., Ijaz, B., & Hua, J. (2017). Overexpression of GhDof1 improved salt and cold tolerance and seed oil content in Gossypium hirsutum. Journal of Plant Physiology, 218, 222-234. doi:10.1016/j.jplph.2017.07.017 es_ES
dc.description.references Takano, J., Noguchi, K., Yasumori, M., Kobayashi, M., Gajdos, Z., Miwa, K., … Fujiwara, T. (2002). Arabidopsis boron transporter for xylem loading. Nature, 420(6913), 337-340. doi:10.1038/nature01139 es_ES
dc.description.references Tanaka, M., & Fujiwara, T. (2007). Physiological roles and transport mechanisms of boron: perspectives from plants. Pflügers Archiv - European Journal of Physiology, 456(4), 671-677. doi:10.1007/s00424-007-0370-8 es_ES
dc.description.references Tanaka, M., Wallace, I. S., Takano, J., Roberts, D. M., & Fujiwara, T. (2008). NIP6;1 Is a Boric Acid Channel for Preferential Transport of Boron to Growing Shoot Tissues in Arabidopsis. The Plant Cell, 20(10), 2860-2875. doi:10.1105/tpc.108.058628 es_ES
dc.description.references Törnroth-Horsefield, S., Wang, Y., Hedfalk, K., Johanson, U., Karlsson, M., Tajkhorshid, E., … Kjellbom, P. (2005). Structural mechanism of plant aquaporin gating. Nature, 439(7077), 688-694. doi:10.1038/nature04316 es_ES
dc.description.references Uraguchi, S. (2014). Generation of boron-deficiency-tolerant tomato by overexpressing an Arabidopsis thaliana borate transporter AtBOR1. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00125 es_ES
dc.description.references Vicent, I., Navarro, A., Mulet, J. M., Sharma, S., & Serrano, R. (2015). Uptake of inorganic phosphate is a limiting factor for Saccharomyces cerevisiae during growth at low temperatures. FEMS Yeast Research, 15(3). doi:10.1093/femsyr/fov008 es_ES
dc.description.references Wallis, J. W., Chrebet, G., Brodsky, G., Rolfe, M., & Rothstein, R. (1989). A hyper-recombination mutation in S. cerevisiae identifies a novel eukaryotic topoisomerase. Cell, 58(2), 409-419. doi:10.1016/0092-8674(89)90855-6 es_ES
dc.description.references Wieland, W. H., Lammers, A., Schots, A., & Orzáez, D. V. (2006). Plant expression of chicken secretory antibodies derived from combinatorial libraries. Journal of Biotechnology, 122(3), 382-391. doi:10.1016/j.jbiotec.2005.12.020 es_ES
dc.description.references Wimmer, M. A., & Eichert, T. (2013). Review: Mechanisms for boron deficiency-mediated changes in plant water relations. Plant Science, 203-204, 25-32. doi:10.1016/j.plantsci.2012.12.012 es_ES
dc.description.references Yu, G., Li, J., Sun, X., Liu, Y., Wang, X., Zhang, H., & Pan, H. (2017). Exploration for the Salinity Tolerance-Related Genes from Xero-Halophyte Atriplex canescens Exploiting Yeast Functional Screening System. International Journal of Molecular Sciences, 18(11), 2444. doi:10.3390/ijms18112444 es_ES
dc.description.references Yuan, D., Li, W., Hua, Y., King, G. J., Xu, F., & Shi, L. (2017). Genome-Wide Identification and Characterization of the Aquaporin Gene Family and Transcriptional Responses to Boron Deficiency in Brassica napus. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01336 es_ES
dc.description.references Zabed, H., Faruq, G., Sahu, J. N., Azirun, M. S., Hashim, R., & Nasrulhaq Boyce, A. (2014). Bioethanol Production from Fermentable Sugar Juice. The Scientific World Journal, 2014, 1-11. doi:10.1155/2014/957102 es_ES
dc.description.references Zhang, Q., Chen, H., He, M., Zhao, Z., Cai, H., Ding, G., … Xu, F. (2017). The boron transporterBnaC4.BOR1;1cis critical for inflorescence development and fertility under boron limitation inBrassica napus. Plant, Cell & Environment, 40(9), 1819-1833. doi:10.1111/pce.12987 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem