- -

Experimental demonstration of a tunable transverse electric pass polarizer based on hybrid VO2/silicon technology

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Experimental demonstration of a tunable transverse electric pass polarizer based on hybrid VO2/silicon technology

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sánchez Diana, Luis David es_ES
dc.contributor.author Olivares-Sánchez-Mellado, Irene es_ES
dc.contributor.author Parra Gómez, Jorge es_ES
dc.contributor.author Menghini, Mariela es_ES
dc.contributor.author Homm, Pia es_ES
dc.contributor.author Locquet, Jean-Pierre es_ES
dc.contributor.author Sanchis Kilders, Pablo es_ES
dc.date.accessioned 2020-06-11T03:33:16Z
dc.date.available 2020-06-11T03:33:16Z
dc.date.issued 2018-08-01 es_ES
dc.identifier.issn 0146-9592 es_ES
dc.identifier.uri http://hdl.handle.net/10251/145989
dc.description.abstract [EN] A tunable transverse electric (TE) pass polarizer is demonstrated based on hybrid vanadium dioxide/silicon (VO2/Si) technology. The 20-mu m-long TE pass polarizer exploits the phase transition of the active VO2 material to control the rejection of the unwanted transverse magnetic (TM) polarization. The device features insertion losses below 1 dB at static conditions and insertion losses of 5.5 dB and an attenuation of TM polarization of 19 dB in the active state for a wavelength range between 1540 nm and 1570 nm. To the best of our knowledge, this is the first time that tunable polarizers compatible with Si photonics are demonstrated. (C) 2018 Optical Society of America es_ES
dc.description.sponsorship Ministerio de Economia y Competitividad (MINECO) (TEC2016-76849); European Commission (EC) [PHRESCO (688579), SITOGA (619456)]; Universitat Politecnica de Valencia; Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT). es_ES
dc.language Inglés es_ES
dc.publisher The Optical Society es_ES
dc.relation.ispartof Optics Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject On-Insulator platform es_ES
dc.subject Phase-Change material es_ES
dc.subject Vo2 Thin-Films es_ES
dc.subject Wave-Guide es_ES
dc.subject Vanadium dioxide es_ES
dc.subject Optical switch es_ES
dc.subject Compact Te es_ES
dc.subject Silicon es_ES
dc.subject Rotator es_ES
dc.subject Transition es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Experimental demonstration of a tunable transverse electric pass polarizer based on hybrid VO2/silicon technology es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OL.43.003650 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/619456/EU/Silicon CMOS compatible transition metal oxide technology for boosting highly integrated photonic devices with disruptive performance/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2016-76849-C2-2-R/ES/DESARROLLO DE OXIDOS METALICOS DE TRANSICION CON TECNOLOGIA DE SILICIO PARA APLICACIONES DE CONMUTACION E INTERCONEXION OPTICAS EFICIENTES Y RESPETUOSAS CON EL MEDIO AMBIENTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/688579/EU/PHotonic REServoir COmputing/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Sánchez Diana, LD.; Olivares-Sánchez-Mellado, I.; Parra Gómez, J.; Menghini, M.; Homm, P.; Locquet, J.; Sanchis Kilders, P. (2018). Experimental demonstration of a tunable transverse electric pass polarizer based on hybrid VO2/silicon technology. Optics Letters. 43(15):3650-3653. https://doi.org/10.1364/OL.43.003650 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1364/OL.43.003650 es_ES
dc.description.upvformatpinicio 3650 es_ES
dc.description.upvformatpfin 3653 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.description.issue 15 es_ES
dc.identifier.pmid 30067646 es_ES
dc.relation.pasarela S\366759 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Comisión Nacional de Investigación Científica y Tecnológica, Chile es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Liu, L., Ding, Y., Yvind, K., & Hvam, J. M. (2011). Efficient and compact TE–TM polarization converter built on silicon-on-insulator platform with a simple fabrication process. Optics Letters, 36(7), 1059. doi:10.1364/ol.36.001059 es_ES
dc.description.references Alonso-Ramos, C., Halir, R., Ortega-Moñux, A., Cheben, P., Vivien, L., Molina-Fernández, Í., … Schmid, J. (2012). Highly tolerant tunable waveguide polarization rotator scheme. Optics Letters, 37(17), 3534. doi:10.1364/ol.37.003534 es_ES
dc.description.references Zhang, H., Das, S., Zhang, J., Huang, Y., Li, C., Chen, S., … Thong, J. T. L. (2012). Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics. Applied Physics Letters, 101(2), 021105. doi:10.1063/1.4734640 es_ES
dc.description.references Azzam, S. I. H., Hameed, M. F. O., Areed, N. F. F., Abd-Elrazzak, M. M., El-Mikaty, H. A., & Obayya, S. S. A. (2014). Proposal of an Ultracompact CMOS-Compatible TE-/TM-Pass Polarizer Based on SoI Platform. IEEE Photonics Technology Letters, 26(16), 1633-1636. doi:10.1109/lpt.2014.2329416 es_ES
dc.description.references Dai, D., Wang, Z., Julian, N., & Bowers, J. E. (2010). Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides. Optics Express, 18(26), 27404. doi:10.1364/oe.18.027404 es_ES
dc.description.references Aamer, M., Gutierrez, A. M., Brimont, A., Vermeulen, D., Roelkens, G., Fedeli, J.-M., … Sanchis, P. (2012). CMOS Compatible Silicon-on-Insulator Polarization Rotator Based on Symmetry Breaking of the Waveguide Cross Section. IEEE Photonics Technology Letters, 24(22), 2031-2034. doi:10.1109/lpt.2012.2218593 es_ES
dc.description.references Xiong, Y., Xu, D.-X., Schmid, J. H., Cheben, P., & Ye, W. N. (2015). High Extinction Ratio and Broadband Silicon TE-Pass Polarizer Using Subwavelength Grating Index Engineering. IEEE Photonics Journal, 7(5), 1-7. doi:10.1109/jphot.2015.2483204 es_ES
dc.description.references Sánchez, L., & Sanchis, P. (2013). Broadband 8 μm long hybrid silicon-plasmonic transverse magnetic–transverse electric converter with losses below 2 dB. Optics Letters, 38(15), 2842. doi:10.1364/ol.38.002842 es_ES
dc.description.references Komatsu, M., Saitoh, K., & Koshiba, M. (2012). Compact Polarization Rotator Based on Surface Plasmon Polariton With Low Insertion Loss. IEEE Photonics Journal, 4(3), 707-714. doi:10.1109/jphot.2012.2195650 es_ES
dc.description.references Caspers, J. N., Alam, M. Z., & Mojahedi, M. (2012). Compact hybrid plasmonic polarization rotator. Optics Letters, 37(22), 4615. doi:10.1364/ol.37.004615 es_ES
dc.description.references Sun, X., Alam, M. Z., Wagner, S. J., Aitchison, J. S., & Mojahedi, M. (2012). Experimental demonstration of a hybrid plasmonic transverse electric pass polarizer for a silicon-on-insulator platform. Optics Letters, 37(23), 4814. doi:10.1364/ol.37.004814 es_ES
dc.description.references Alam, M. Z., Aitchison, J. S., & Mojahedi, M. (2011). Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer. Optics Letters, 37(1), 55. doi:10.1364/ol.37.000055 es_ES
dc.description.references Jin, L., Chen, Q., & Wen, L. (2014). Mode-coupling polarization rotator based on plasmonic waveguide. Optics Letters, 39(9), 2798. doi:10.1364/ol.39.002798 es_ES
dc.description.references Caspers, J. N., Aitchison, J. S., & Mojahedi, M. (2013). Experimental demonstration of an integrated hybrid plasmonic polarization rotator. Optics Letters, 38(20), 4054. doi:10.1364/ol.38.004054 es_ES
dc.description.references Briggs, R. M., Pryce, I. M., & Atwater, H. A. (2010). Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition. Optics Express, 18(11), 11192. doi:10.1364/oe.18.011192 es_ES
dc.description.references Ryckman, J. D., Hallman, K. A., Marvel, R. E., Haglund, R. F., & Weiss, S. M. (2013). Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition. Optics Express, 21(9), 10753. doi:10.1364/oe.21.010753 es_ES
dc.description.references Markov, P., Marvel, R. E., Conley, H. J., Miller, K. J., Haglund, R. F., & Weiss, S. M. (2015). Optically Monitored Electrical Switching in VO2. ACS Photonics, 2(8), 1175-1182. doi:10.1021/acsphotonics.5b00244 es_ES
dc.description.references Joushaghani, A., Jeong, J., Paradis, S., Alain, D., Stewart Aitchison, J., & Poon, J. K. S. (2015). Wavelength-size hybrid Si-VO_2 waveguide electroabsorption optical switches and photodetectors. Optics Express, 23(3), 3657. doi:10.1364/oe.23.003657 es_ES
dc.description.references Sánchez, L., Lechago, S., & Sanchis, P. (2015). Ultra-compact TE and TM pass polarizers based on vanadium dioxide on silicon. Optics Letters, 40(7), 1452. doi:10.1364/ol.40.001452 es_ES
dc.description.references Sanchez, L., Lechago, S., Gutierrez, A., & Sanchis, P. (2016). Analysis and Design Optimization of a Hybrid VO2/Silicon2 <inline-formula> <tex-math notation=«LaTeX»>$\times$</tex-math> </inline-formula> 2 Microring Switch. IEEE Photonics Journal, 8(2), 1-9. doi:10.1109/jphot.2016.2551463 es_ES
dc.description.references Miller, K. J., Hallman, K. A., Haglund, R. F., & Weiss, S. M. (2017). Silicon waveguide optical switch with embedded phase change material. Optics Express, 25(22), 26527. doi:10.1364/oe.25.026527 es_ES
dc.description.references Clark, J. K., Ho, Y.-L., Matsui, H., & Delaunay, J.-J. (2018). Optically Pumped Hybrid Plasmonic-Photonic Waveguide Modulator Using the VO2 Metal-Insulator Phase Transition. IEEE Photonics Journal, 10(1), 1-9. doi:10.1109/jphot.2017.2784429 es_ES
dc.description.references Ko, C., & Ramanathan, S. (2008). Observation of electric field-assisted phase transition in thin film vanadium oxide in a metal-oxide-semiconductor device geometry. Applied Physics Letters, 93(25), 252101. doi:10.1063/1.3050464 es_ES
dc.description.references Zimmers, A., Aigouy, L., Mortier, M., Sharoni, A., Wang, S., West, K. G., … Schuller, I. K. (2013). Role of Thermal Heating on the Voltage Induced Insulator-Metal Transition inVO2. Physical Review Letters, 110(5). doi:10.1103/physrevlett.110.056601 es_ES
dc.description.references Kats, M. A., Blanchard, R., Genevet, P., Yang, Z., Qazilbash, M. M., Basov, D. N., … Capasso, F. (2013). Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material. Optics Letters, 38(3), 368. doi:10.1364/ol.38.000368 es_ES
dc.description.references Chae, B.-G., Kim, H.-T., Youn, D.-H., & Kang, K.-Y. (2005). Abrupt metal–insulator transition observed in VO2 thin films induced by a switching voltage pulse. Physica B: Condensed Matter, 369(1-4), 76-80. doi:10.1016/j.physb.2005.07.032 es_ES
dc.description.references Ruzmetov, D., Gopalakrishnan, G., Deng, J., Narayanamurti, V., & Ramanathan, S. (2009). Electrical triggering of metal-insulator transition in nanoscale vanadium oxide junctions. Journal of Applied Physics, 106(8), 083702. doi:10.1063/1.3245338 es_ES
dc.description.references Lee, S. B., Kim, K., Oh, J. S., Kahng, B., & Lee, J. S. (2013). Origin of variation in switching voltages in threshold-switching phenomena of VO2 thin films. Applied Physics Letters, 102(6), 063501. doi:10.1063/1.4790842 es_ES
dc.description.references Joushaghani, A., Jeong, J., Paradis, S., Alain, D., Stewart Aitchison, J., & Poon, J. K. S. (2014). Voltage-controlled switching and thermal effects in VO2 nano-gap junctions. Applied Physics Letters, 104(22), 221904. doi:10.1063/1.4881155 es_ES
dc.description.references Yang, Z., Hart, S., Ko, C., Yacoby, A., & Ramanathan, S. (2011). Studies on electric triggering of the metal-insulator transition in VO2thin films between 77 K and 300 K. Journal of Applied Physics, 110(3), 033725. doi:10.1063/1.3619806 es_ES
dc.description.references Yoon, J., Lee, G., Park, C., Mun, B. S., & Ju, H. (2014). Investigation of length-dependent characteristics of the voltage-induced metal insulator transition in VO2 film devices. Applied Physics Letters, 105(8), 083503. doi:10.1063/1.4893783 es_ES
dc.description.references Sánchez, L., Rosa, A., Griol, A., Gutierrez, A., Homm, P., Van Bilzen, B., … Sanchis, P. (2017). Impact of the external resistance on the switching power consumption in VO2 nano gap junctions. Applied Physics Letters, 111(3), 031904. doi:10.1063/1.4994326 es_ES
dc.description.references Ryckman, J. D., Diez-Blanco, V., Nag, J., Marvel, R. E., Choi, B. K., Haglund, R. F., & Weiss, S. M. (2012). Photothermal optical modulation of ultra-compact hybrid Si-VO_2 ring resonators. Optics Express, 20(12), 13215. doi:10.1364/oe.20.013215 es_ES
dc.description.references Abreu, E., Gilbert Corder, S. N., Yun, S. J., Wang, S., Ramírez, J. G., West, K., … Averitt, R. D. (2017). Ultrafast electron-lattice coupling dynamics in VO2 and V2O3 thin films. Physical Review B, 96(9). doi:10.1103/physrevb.96.094309 es_ES
dc.description.references Van Bilzen, B., Homm, P., Dillemans, L., Su, C.-Y., Menghini, M., Sousa, M., … Locquet, J.-P. (2015). Production of VO2 thin films through post-deposition annealing of V2O3 and VOx films. Thin Solid Films, 591, 143-148. doi:10.1016/j.tsf.2015.08.036 es_ES
dc.description.references Olivares, I., Sánchez, L., Parra, J., Larrea, R., Griol, A., Menghini, M., … Sanchis, P. (2018). Optical switching in hybrid VO2/Si waveguides thermally triggered by lateral microheaters. Optics Express, 26(10), 12387. doi:10.1364/oe.26.012387 es_ES
dc.description.references Rosa, Á., Gutiérrez, A., Brimont, A., Griol, A., & Sanchis, P. (2016). High performace silicon 2x2 optical switch based on a thermo-optically tunable multimode interference coupler and efficient electrodes. Optics Express, 24(1), 191. doi:10.1364/oe.24.000191 es_ES
dc.description.references Shibuya, K., Kawasaki, M., & Tokura, Y. (2010). Metal-insulator transition in epitaxial V1−xWxO2(0≤x≤0.33) thin films. Applied Physics Letters, 96(2), 022102. doi:10.1063/1.3291053 es_ES
dc.description.references Ahuja, R., Granqvist, C. G., Hermansson, K., Niklasson, G. A., & Scheicher, R. H. (2012). Optical properties of Mg-doped VO2: Absorption measurements and hybrid functional calculations. Applied Physics Letters, 101(20), 201902. doi:10.1063/1.4766167 es_ES
dc.description.references Miyazaki, K., Shibuya, K., Suzuki, M., Wado, H., & Sawa, A. (2014). Correlation between thermal hysteresis width and broadening of metal–insulator transition in Cr- and Nb-doped VO2films. Japanese Journal of Applied Physics, 53(7), 071102. doi:10.7567/jjap.53.071102 es_ES
dc.description.references Niklasson, G. A., Granqvist, C. G., & Hunderi, O. (1981). Effective medium models for the optical properties of inhomogeneous materials. Applied Optics, 20(1), 26. doi:10.1364/ao.20.000026 es_ES
dc.description.references Jepsen, P. U., Fischer, B. M., Thoman, A., Helm, H., Suh, J. Y., Lopez, R., & Haglund, R. F. (2006). Metal-insulator phase transition in aVO2thin film observed with terahertz spectroscopy. Physical Review B, 74(20). doi:10.1103/physrevb.74.205103 es_ES
dc.description.references Fang, X., & Yang, L. (2017). Thermal effect analysis of silicon microring optical switch for on-chip interconnect. Journal of Semiconductors, 38(10), 104004. doi:10.1088/1674-4926/38/10/104004 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem