Mostrar el registro sencillo del ítem
dc.contributor.author | Reibner, Anne Marie | es_ES |
dc.contributor.author | Al Hamimi, Said | es_ES |
dc.contributor.author | Quiles Chuliá, Mª Desamparados | es_ES |
dc.contributor.author | Schmidt, Carolin | es_ES |
dc.contributor.author | Struck, S. | es_ES |
dc.contributor.author | Hernando Hernando, Mª Isabel | es_ES |
dc.contributor.author | Turner, Charlotta | es_ES |
dc.contributor.author | Rohm, H. | es_ES |
dc.date.accessioned | 2020-06-11T03:33:24Z | |
dc.date.available | 2020-06-11T03:33:24Z | |
dc.date.issued | 2018-08 | es_ES |
dc.identifier.issn | 0022-5142 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/145991 | |
dc.description.abstract | [EN] BACKGROUND Berry pomace is a valuable but little used by-product of juice manufacturing. When processed to a stable fruit powder, the composition differs from that of the whole fruit. To facilitate application in foods, a detailed knowledge of its composition and physicochemical properties is essential. RESULTS Blackcurrant, redcurrant, chokeberry, rowanberry and gooseberry were selected for analysis. All pomace powders had a high fibre content (> 550 g kg(-1)) and a fat content of up to 200 g kg(-1). Despite identical milling conditions, the particle sizes of the pomace powders varied. This can be traced back to seed content and brittleness, which also becomes apparent with respect to surface characteristics. Blackcurrant pomace powder differed from other varieties in terms of its low water-binding capacity (3.2 g g(-1)) and a moderate moisture uptake, whereas chokeberry pomace powder showed the highest polyphenol content and rowanberry pomace powder was rich in flavonols. CONCLUSION The results obtained in the present study provide a comprehensive overview of the properties of berry pomace powder and allow conclusions to be made regarding their applicability for use in complex food systems. (c) 2018 Society of Chemical Industry | es_ES |
dc.description.sponsorship | The research project was approved during the second SUSFOOD ERA-Net call (www.susfood-era.net).The funding of the project, assured through the national partner organizations, is gratefully acknowledged: Federal Ministry of Education and Research via PTJ in Germany (grant 031B0004), INIA in Spain and FORMAS in Sweden. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Journal of the Science of Food and Agriculture | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Berry pomace | es_ES |
dc.subject | Sustainability | es_ES |
dc.subject | Dietary fibre | es_ES |
dc.subject | Technofunctional properties | es_ES |
dc.subject | Polyphenols | es_ES |
dc.subject | Vapour sorption | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Composition and physicochemical properties of dried berry pomace | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/jsfa.9302 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/291766/EU/Sustainable Food/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/BMBF//031B0004/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | Reibner, AM.; Al Hamimi, S.; Quiles Chuliá, MD.; Schmidt, C.; Struck, S.; Hernando Hernando, MI.; Turner, C.... (2018). Composition and physicochemical properties of dried berry pomace. Journal of the Science of Food and Agriculture. 99(3):1284-1293. https://doi.org/10.1002/jsfa.9302 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/jsfa.9302 | es_ES |
dc.description.upvformatpinicio | 1284 | es_ES |
dc.description.upvformatpfin | 1293 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 99 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\377175 | es_ES |
dc.contributor.funder | Swedish Research Council Formas | es_ES |
dc.contributor.funder | Bundesministerium für Bildung und Forschung, Alemania | es_ES |
dc.contributor.funder | Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria | es_ES |
dc.description.references | Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., & Attia, H. (2011). Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chemistry, 124(2), 411-421. doi:10.1016/j.foodchem.2010.06.077 | es_ES |
dc.description.references | Ktenioudaki, A., & Gallagher, E. (2012). Recent advances in the development of high-fibre baked products. Trends in Food Science & Technology, 28(1), 4-14. doi:10.1016/j.tifs.2012.06.004 | es_ES |
dc.description.references | McKee, L. H., & Latner, T. A. (2000). Plant Foods for Human Nutrition, 55(4), 285-304. doi:10.1023/a:1008144310986 | es_ES |
dc.description.references | Dhillon, G. S., Kaur, S., & Brar, S. K. (2013). Perspective of apple processing wastes as low-cost substrates for bioproduction of high value products: A review. Renewable and Sustainable Energy Reviews, 27, 789-805. doi:10.1016/j.rser.2013.06.046 | es_ES |
dc.description.references | Kohajdová, Z., Karovičová, J., & Jurasová, M. (2013). Influence of grapefruit dietary fibre rich powder on the rheological characteristics of wheat flour dough and on biscuit quality. Acta Alimentaria, 42(1), 91-101. doi:10.1556/aalim.42.2013.1.9 | es_ES |
dc.description.references | Struck, S., Plaza, M., Turner, C., & Rohm, H. (2016). Berry pomace - a review of processing and chemical analysis of its polyphenols. International Journal of Food Science & Technology, 51(6), 1305-1318. doi:10.1111/ijfs.13112 | es_ES |
dc.description.references | Skrede, G., Wrolstad, R. E., & Durst, R. W. (2000). Changes in Anthocyanins and Polyphenolics During Juice Processing of Highbush Blueberries (Vaccinium corymbosum L.). Journal of Food Science, 65(2), 357-364. doi:10.1111/j.1365-2621.2000.tb16007.x | es_ES |
dc.description.references | Holtung, L., Grimmer, S., & Aaby, K. (2011). Effect of Processing of Black Currant Press-Residue on Polyphenol Composition and Cell Proliferation. Journal of Agricultural and Food Chemistry, 59(8), 3632-3640. doi:10.1021/jf104427r | es_ES |
dc.description.references | Oszmiański, J., & Wojdylo, A. (2005). Aronia melanocarpa phenolics and their antioxidant activity. European Food Research and Technology, 221(6), 809-813. doi:10.1007/s00217-005-0002-5 | es_ES |
dc.description.references | Viuda-Martos, M., López-Marcos, M. C., Fernández-López, J., Sendra, E., López-Vargas, J. H., & Pérez-Álvarez, J. A. (2010). Role of Fiber in Cardiovascular Diseases: A Review. Comprehensive Reviews in Food Science and Food Safety, 9(2), 240-258. doi:10.1111/j.1541-4337.2009.00102.x | es_ES |
dc.description.references | Eim, V. S., Simal, S., Rosselló, C., & Femenia, A. (2008). Effects of addition of carrot dietary fibre on the ripening process of a dry fermented sausage (sobrassada). Meat Science, 80(2), 173-182. doi:10.1016/j.meatsci.2007.11.017 | es_ES |
dc.description.references | Sójka, M., Miszczak, A., Sikorski, P., Zagibajło, K., Karlińska, E., & Kosmala, M. (2015). Pesticide residue levels in strawberry processing by-products that are rich in ellagitannins and an assessment of their dietary risk to consumers. NFS Journal, 1, 31-37. doi:10.1016/j.nfs.2015.09.001 | es_ES |
dc.description.references | European Commission EU pesticides database http://ec.europa.eu/food | es_ES |
dc.description.references | Ortelli, D., Edder, P., & Corvi, C. (2004). Multiresidue analysis of 74 pesticides in fruits and vegetables by liquid chromatography–electrospray–tandem mass spectrometry. Analytica Chimica Acta, 520(1-2), 33-45. doi:10.1016/j.aca.2004.03.037 | es_ES |
dc.description.references | Rohm, H., Brennan, C., Turner, C., Günther, E., Campbell, G., Hernando, I., … Kontogiorgos, V. (2015). Adding Value to Fruit Processing Waste: Innovative Ways to Incorporate Fibers from Berry Pomace in Baked and Extruded Cereal-based Foods—A SUSFOOD Project. Foods, 4(4), 690-697. doi:10.3390/foods4040690 | es_ES |
dc.description.references | Schmidt, C., Geweke, I., Struck, S., Zahn, S., & Rohm, H. (2017). Blackcurrant pomace from juice processing as partial flour substitute in savoury crackers: dough characteristics and product properties. International Journal of Food Science & Technology, 53(1), 237-245. doi:10.1111/ijfs.13639 | es_ES |
dc.description.references | Tarrega, A., Quiles, A., Morell, P., Fiszman, S., & Hernando, I. (2017). Importance of consumer perceptions in fiber-enriched food products. A case study with sponge cakes. Food & Function, 8(2), 574-583. doi:10.1039/c6fo01022a | es_ES |
dc.description.references | Šporin, M., Avbelj, M., Kovač, B., & Možina, S. S. (2017). Quality characteristics of wheat flour dough and bread containing grape pomace flour. Food Science and Technology International, 24(3), 251-263. doi:10.1177/1082013217745398 | es_ES |
dc.description.references | Choi, Y.-S., Kim, Y.-B., Hwang, K.-E., Song, D.-H., Ham, Y.-K., Kim, H.-W., … Kim, C.-J. (2016). Effect of apple pomace fiber and pork fat levels on quality characteristics of uncured, reduced-fat chicken sausages. Poultry Science, 95(6), 1465-1471. doi:10.3382/ps/pew096 | es_ES |
dc.description.references | Hilz, H., Bakx, E. J., Schols, H. A., & Voragen, A. G. J. (2005). Cell wall polysaccharides in black currants and bilberries—characterisation in berries, juice, and press cake. Carbohydrate Polymers, 59(4), 477-488. doi:10.1016/j.carbpol.2004.11.002 | es_ES |
dc.description.references | Tournas, V. H., & Katsoudas, E. (2005). Mould and yeast flora in fresh berries, grapes and citrus fruits. International Journal of Food Microbiology, 105(1), 11-17. doi:10.1016/j.ijfoodmicro.2005.05.002 | es_ES |
dc.description.references | Sivam, A. S., Sun-Waterhouse, D., Perera, C. O., & Waterhouse, G. I. N. (2012). Exploring the interactions between blackcurrant polyphenols, pectin and wheat biopolymers in model breads; a FTIR and HPLC investigation. Food Chemistry, 131(3), 802-810. doi:10.1016/j.foodchem.2011.09.047 | es_ES |
dc.description.references | Plaza, M., Abrahamsson, V., & Turner, C. (2013). Extraction and Neoformation of Antioxidant Compounds by Pressurized Hot Water Extraction from Apple Byproducts. Journal of Agricultural and Food Chemistry, 61(23), 5500-5510. doi:10.1021/jf400584f | es_ES |
dc.description.references | Hernández-Carrión, M., Sanz, T., Hernando, I., Llorca, E., Fiszman, S. M., & Quiles, A. (2015). New formulations of functional white sauces enriched with red sweet pepper: a rheological, microstructural and sensory study. European Food Research and Technology, 240(6), 1187-1202. doi:10.1007/s00217-015-2422-1 | es_ES |
dc.description.references | Rohm, H., & Jaros, D. (1996). Colour of hard cheese. Zeitschrift f�r Lebensmittel-Untersuchung und -Forschung, 203(3), 241-244. doi:10.1007/bf01192871 | es_ES |
dc.description.references | Mutungi, C., Schuldt, S., Onyango, C., Schneider, Y., Jaros, D., & Rohm, H. (2011). Dynamic Moisture Sorption Characteristics of Enzyme-Resistant Recrystallized Cassava Starch. Biomacromolecules, 12(3), 660-671. doi:10.1021/bm101321q | es_ES |
dc.description.references | Zahn, S., Forker, A., Krügel, L., & Rohm, H. (2013). Combined use of rebaudioside A and fibres for partial sucrose replacement in muffins. LWT - Food Science and Technology, 50(2), 695-701. doi:10.1016/j.lwt.2012.07.026 | es_ES |
dc.description.references | Robertson, J. A., de Monredon, F. D., Dysseler, P., Guillon, F., Amado, R., & Thibault, J.-F. (2000). Hydration Properties of Dietary Fibre and Resistant Starch: a European Collaborative Study. LWT - Food Science and Technology, 33(2), 72-79. doi:10.1006/fstl.1999.0595 | es_ES |
dc.description.references | Raghavendra, S. N., Ramachandra Swamy, S. R., Rastogi, N. K., Raghavarao, K. S. M. S., Kumar, S., & Tharanathan, R. N. (2006). Grinding characteristics and hydration properties of coconut residue: A source of dietary fiber. Journal of Food Engineering, 72(3), 281-286. doi:10.1016/j.jfoodeng.2004.12.008 | es_ES |
dc.description.references | Vagiri, M., & Jensen, M. (2017). Influence of juice processing factors on quality of black chokeberry pomace as a future resource for colour extraction. Food Chemistry, 217, 409-417. doi:10.1016/j.foodchem.2016.08.121 | es_ES |
dc.description.references | Sójka, M., & Król, B. (2008). Composition of industrial seedless black currant pomace. European Food Research and Technology, 228(4), 597-605. doi:10.1007/s00217-008-0968-x | es_ES |
dc.description.references | Sójka, M., Kołodziejczyk, K., & Milala, J. (2013). Polyphenolic and basic chemical composition of black chokeberry industrial by-products. Industrial Crops and Products, 51, 77-86. doi:10.1016/j.indcrop.2013.08.051 | es_ES |
dc.description.references | U.S. Department of Agriculture, Agricultural Research Service USDA National Nutrient Database for Standard Reference https://www.ars.usda.gov/ | es_ES |
dc.description.references | National Institute for Health and Welfare, Fineli Finnish food composition database https://fineli.fi/fineli/en/index | es_ES |
dc.description.references | Wawer, I., Wolniak, M., & Paradowska, K. (2006). Solid state NMR study of dietary fiber powders from aronia, bilberry, black currant and apple. Solid State Nuclear Magnetic Resonance, 30(2), 106-113. doi:10.1016/j.ssnmr.2006.05.001 | es_ES |
dc.description.references | German Society for Hygiene and Microbiology Mikrobiologische Richt- und Warnwerte zur Beurteilung von Lebensmitteln https://www.dghm-richt-warnwerte.de/de | es_ES |
dc.description.references | Fazaeli, M., Emam-Djomeh, Z., Kalbasi Ashtari, A., & Omid, M. (2012). Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food and Bioproducts Processing, 90(4), 667-675. doi:10.1016/j.fbp.2012.04.006 | es_ES |
dc.description.references | Margraf, T., Karnopp, A. R., Rosso, N. D., & Granato, D. (2015). Comparison between Folin-Ciocalteu and Prussian Blue Assays to Estimate The Total Phenolic Content of Juices and Teas Using 96-Well Microplates. Journal of Food Science, 80(11), C2397-C2403. doi:10.1111/1750-3841.13077 | es_ES |
dc.description.references | Sajewicz, M., Staszek, D., Wróbel, M. S., Waksmundzka-Hajnos, M., & Kowalska, T. (2012). The HPLC/DAD Fingerprints and Chemometric Analysis of Flavonoid Extracts from the Selected Sage (Salvia) Species. Chromatography Research International, 2012, 1-8. doi:10.1155/2012/230903 | es_ES |
dc.description.references | Ćujić, N., Savikin, K., Miloradovic, Z., Ivanov, M., Vajic, U.-J., Karanovic, D., … Mihailovic-Stanojevic, N. (2018). Characterization of dried chokeberry fruit extract and its chronic effects on blood pressure and oxidative stress in spontaneously hypertensive rats. Journal of Functional Foods, 44, 330-339. doi:10.1016/j.jff.2018.02.027 | es_ES |
dc.description.references | Gavrilova, V., Kajdžanoska, M., Gjamovski, V., & Stefova, M. (2011). Separation, Characterization and Quantification of Phenolic Compounds in Blueberries and Red and Black Currants by HPLC−DAD−ESI-MSn. Journal of Agricultural and Food Chemistry, 59(8), 4009-4018. doi:10.1021/jf104565y | es_ES |
dc.description.references | Bochi, V. C., Godoy, H. T., & Giusti, M. M. (2015). Anthocyanin and other phenolic compounds in Ceylon gooseberry (Dovyalis hebecarpa) fruits. Food Chemistry, 176, 234-243. doi:10.1016/j.foodchem.2014.12.041 | es_ES |
dc.description.references | Kylli, P., Nohynek, L., Puupponen-Pimiä, R., Westerlund-Wikström, B., McDougall, G., Stewart, D., & Heinonen, M. (2010). Rowanberry Phenolics: Compositional Analysis and Bioactivities. Journal of Agricultural and Food Chemistry, 58(22), 11985-11992. doi:10.1021/jf102739v | es_ES |
dc.description.references | Bräunlich, M., Slimestad, R., Wangensteen, H., Brede, C., Malterud, K., & Barsett, H. (2013). Extracts, Anthocyanins and Procyanidins from Aronia melanocarpa as Radical Scavengers and Enzyme Inhibitors. Nutrients, 5(3), 663-678. doi:10.3390/nu5030663 | es_ES |
dc.description.references | Nakajima, J., Tanaka, I., Seo, S., Yamazaki, M., & Saito, K. (2004). LC/PDA/ESI-MS Profiling and Radical Scavenging Activity of Anthocyanins in Various Berries. Journal of Biomedicine and Biotechnology, 2004(5), 241-247. doi:10.1155/s1110724304404045 | es_ES |
dc.description.references | Borges, G., Degeneve, A., Mullen, W., & Crozier, A. (2010). Identification of Flavonoid and Phenolic Antioxidants in Black Currants, Blueberries, Raspberries, Red Currants, and Cranberries†. Journal of Agricultural and Food Chemistry, 58(7), 3901-3909. doi:10.1021/jf902263n | es_ES |
dc.description.references | Laroze, L. E., Díaz-Reinoso, B., Moure, A., Zúñiga, M. E., & Domínguez, H. (2010). Extraction of antioxidants from several berries pressing wastes using conventional and supercritical solvents. European Food Research and Technology, 231(5), 669-677. doi:10.1007/s00217-010-1320-9 | es_ES |
dc.description.references | Rakic, V., Ota, A., Skrt, M., Miljkovic, M., Kostic, D., Sokolovic, D., & Poklar-Ulrih, N. (2015). Investigation of fluorescence properties of cyanidin and cyanidin 3-o-β-glucopyranoside. Hemijska industrija, 69(2), 155-163. doi:10.2298/hemind140203030r | es_ES |
dc.description.references | Raghavendra, S. N., Rastogi, N. K., Raghavarao, K. S. M. S., & Tharanathan, R. N. (2004). Dietary fiber from coconut residue: effects of different treatments and particle size on the hydration properties. European Food Research and Technology, 218(6), 563-567. doi:10.1007/s00217-004-0889-2 | es_ES |
dc.description.references | Kosmala, M., Kołodziejczyk, K., Markowski, J., Mieszczakowska, M., Ginies, C., & Renard, C. M. G. C. (2010). Co-products of black-currant and apple juice production: Hydration properties and polysaccharide composition. LWT - Food Science and Technology, 43(1), 173-180. doi:10.1016/j.lwt.2009.06.016 | es_ES |
dc.description.references | Guillon, F., & Champ, M. (2000). Structural and physical properties of dietary fibres, and consequences of processing on human physiology. Food Research International, 33(3-4), 233-245. doi:10.1016/s0963-9969(00)00038-7 | es_ES |
dc.description.references | Rosell, C. M., Santos, E., & Collar, C. (2009). Physico-chemical properties of commercial fibres from different sources: A comparative approach. Food Research International, 42(1), 176-184. doi:10.1016/j.foodres.2008.10.003 | es_ES |
dc.description.references | Yalegama, L. L. W. C., Nedra Karunaratne, D., Sivakanesan, R., & Jayasekara, C. (2013). Chemical and functional properties of fibre concentrates obtained from by-products of coconut kernel. Food Chemistry, 141(1), 124-130. doi:10.1016/j.foodchem.2013.02.118 | es_ES |
dc.description.references | Selani, M. M., Brazaca, S. G. C., dos Santos Dias, C. T., Ratnayake, W. S., Flores, R. A., & Bianchini, A. (2014). Characterisation and potential application of pineapple pomace in an extruded product for fibre enhancement. Food Chemistry, 163, 23-30. doi:10.1016/j.foodchem.2014.04.076 | es_ES |
dc.description.references | Figuerola, F., Hurtado, M. L., Estévez, A. M., Chiffelle, I., & Asenjo, F. (2005). Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chemistry, 91(3), 395-401. doi:10.1016/j.foodchem.2004.04.036 | es_ES |
dc.description.references | Kohajdová, Z., Karovičová, J., Magala, M., & Kuchtová, V. (2014). Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality. Chemical Papers, 68(8). doi:10.2478/s11696-014-0567-1 | es_ES |
dc.description.references | CHEN, J. Y., PIVA, M., & LABUZA, T. P. (1984). Evaluation of Water Binding Capacity (WBC) of Food Fiber Sources. Journal of Food Science, 49(1), 59-63. doi:10.1111/j.1365-2621.1984.tb13668.x | es_ES |
dc.description.references | Timmermann, E. O. (1989). A B. E. T.-like three sorption stage isotherm. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 85(7), 1631. doi:10.1039/f19898501631 | es_ES |
dc.description.references | Witczak, T., Witczak, M., Socha, R., StĘPień, A., & Grzesik, M. (2016). Candied Orange Peel Produced in Solutions with Various Sugar Compositions: Sugar Composition and Sorption Properties of the Product. Journal of Food Process Engineering, 40(2), e12367. doi:10.1111/jfpe.12367 | es_ES |
dc.description.references | Tsami, E., Krokida, M. K., & Drouzas, A. E. (1998). Effect of drying method on the sorption characteristics of model fruit powders. Journal of Food Engineering, 38(4), 381-392. doi:10.1016/s0260-8774(98)00130-7 | es_ES |
dc.description.references | Oliveira, D. E. C. de, Resende, O., Costa, L. M., Ferreira Júnior, W. N., & Igor O. F., S. (2017). Hygroscopicity of baru (Dipteryx alata Vogel) fruit. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(4), 279-284. doi:10.1590/1807-1929/agriambi.v21n4p279-284 | es_ES |
dc.description.references | Ribeiro, L. C., Costa, J. M. C. da, & Afonso, M. R. A. (2016). Hygroscopic behavior of lyophilized acerola pulp powder. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(3), 269-274. doi:10.1590/1807-1929/agriambi.v20n3p269-274 | es_ES |
dc.description.references | Struck, S., Straube, D., Zahn, S., & Rohm, H. (2018). Interaction of wheat macromolecules and berry pomace in model dough: Rheology and microstructure. Journal of Food Engineering, 223, 109-115. doi:10.1016/j.jfoodeng.2017.12.011 | es_ES |