Mostrar el registro completo del ítem
Martín, A.; Lara-Cabrera, R.; Fuentes-Hurtado, FJ.; Naranjo Ornedo, V.; Camacho, D. (2018). EvoDeep: A new evolutionary approach for automatic Deep Neural Networks parametrisation. Journal of Parallel and Distributed Computing. 117:180-191. https://doi.org/10.1016/j.jpdc.2017.09.006
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/146154
Título: | EvoDeep: A new evolutionary approach for automatic Deep Neural Networks parametrisation | |
Autor: | Martín, Alejandro Lara-Cabrera, Raúl Fuentes-Hurtado, Félix José Camacho, David | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] Deep Neural Networks (DNN) have become a powerful, and extremely popular mechanism, which has been widely used to solve problems of varied complexity, due to their ability to make models fitted to non-linear complex ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reserva de todos los derechos | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.1016/j.jpdc.2017.09.006 | |
Código del Proyecto: |
|
|
Agradecimientos: |
This work has been co-funded by the next research projects: EphemeCH (TIN2014-56494-C4-4-P) and DeepBio (TIN2017-85727-C4-3-P) Spanish Ministry of Economy and Competitivity and European Regional Development Fund FEDER, ...[+]
|
|
Tipo: |
|