- -

Optical vortex trapping and annihilation by means of nonlinear Bessel beams in nonlinear absorbing media

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Optical vortex trapping and annihilation by means of nonlinear Bessel beams in nonlinear absorbing media

Show simple item record

Files in this item

dc.contributor.author García-Riquelme, José L. es_ES
dc.contributor.author Ramos, Francisco es_ES
dc.contributor.author Porras, Miguel A. es_ES
dc.date.accessioned 2020-06-12T03:32:52Z
dc.date.available 2020-06-12T03:32:52Z
dc.date.issued 2018-12-01 es_ES
dc.identifier.issn 0740-3224 es_ES
dc.identifier.uri http://hdl.handle.net/10251/146156
dc.description "This paper was published in Journal of the Optical Society of America B and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: https://doi.org/10.1364/JOSAB.35.003030. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law" es_ES
dc.description.abstract [EN] In nonlinear Kerr media at intensities such that multiphoton absorption is significant, a vortex of topological charge m in the center of a high-order nonlinear Bessel beam (NBB) can be stable and subsist endlessly. We show that the m-charged NBB is not only stable but is formed spontaneously from any other n-charged NBB and N "foreign" vortices of total charge s that are randomly nested in the beam cross section if n + s = m. All nested vortices merge in the center of the original NBB, which undergoes a mode conversion to the NBB that preserves the topological charge and the inward-directed power current that sustains the diffraction-free and attenuation-free propagation in the medium with nonlinear absorption. We foresee different applications such as the creation of stable, multiple-charged vortices without tight alignment requirements but by spontaneous vortex combination, mixing waves or particles that the vortices can guide, fast annihilation of vortex dipoles, and cleaning of speckled beams by massive annihilation of vortices. (C) 2018 Optical Society of America es_ES
dc.description.sponsorship Ministerio de Economía y Competitividad (MINECO) (FIS2017-87360-P, MTM2015-63914-P). es_ES
dc.language Inglés es_ES
dc.publisher The Optical Society es_ES
dc.relation.ispartof Journal of the Optical Society of America B es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Propagation dynamics es_ES
dc.subject Solitions es_ES
dc.subject Filamentation es_ES
dc.subject Motion es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Optical vortex trapping and annihilation by means of nonlinear Bessel beams in nonlinear absorbing media es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/JOSAB.35.003030 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/FIS2017-87360-P/ES/CONTROL COHERENTE Y CONTROL DE LA FASE ENVOLVENTE-PORTADORA PARA LA GENERACION DE SEGUNDO ARMONICO EN NANOSISTEMAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2015-63914-P/ES/CAOS CUANTICO Y CLASICO EN SISTEMA DINAMICOS Y COMPLEJIDAD/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation García-Riquelme, JL.; Ramos, F.; Porras, MA. (2018). Optical vortex trapping and annihilation by means of nonlinear Bessel beams in nonlinear absorbing media. Journal of the Optical Society of America B. 35(12):3030-3038. https://doi.org/10.1364/JOSAB.35.003030 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1364/JOSAB.35.003030 es_ES
dc.description.upvformatpinicio 3030 es_ES
dc.description.upvformatpfin 3038 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 35 es_ES
dc.description.issue 12 es_ES
dc.relation.pasarela S\373465 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Rozas, D., Law, C. T., & Swartzlander, Jr., G. A. (1997). Propagation dynamics of optical vortices. Journal of the Optical Society of America B, 14(11), 3054. doi:10.1364/josab.14.003054 es_ES
dc.description.references Kivshar, Y. S., Christou, J., Tikhonenko, V., Luther-Davies, B., & Pismen, L. M. (1998). Dynamics of optical vortex solitons. Optics Communications, 152(1-3), 198-206. doi:10.1016/s0030-4018(98)00149-7 es_ES
dc.description.references Christou, J., Tikhonenko, V., Kivshar, Y. S., & Luther-Davies, B. (1996). Vortex soliton motion and steering. Optics Letters, 21(20), 1649. doi:10.1364/ol.21.001649 es_ES
dc.description.references Luther-Davies, B., Christou, J., Tikhonenko, V., & Kivshar, Y. S. (1997). Optical vortex solitons: experiment versus theory. Journal of the Optical Society of America B, 14(11), 3045. doi:10.1364/josab.14.003045 es_ES
dc.description.references Schwarz, U. T., Sogomonian, S., & Maier, M. (2002). Propagation dynamics of phase dislocations embedded in a Bessel light beam. Optics Communications, 208(4-6), 255-262. doi:10.1016/s0030-4018(02)01621-8 es_ES
dc.description.references Rozas, D., Sacks, Z. S., & Swartzlander, G. A. (1997). Experimental Observation of Fluidlike Motion of Optical Vortices. Physical Review Letters, 79(18), 3399-3402. doi:10.1103/physrevlett.79.3399 es_ES
dc.description.references Rozas, D., & Swartzlander, G. A. (2000). Observed rotational enhancement of nonlinear optical vortices. Optics Letters, 25(2), 126. doi:10.1364/ol.25.000126 es_ES
dc.description.references Hansinger, P., Dreischuh, A., & Paulus, G. G. (2009). Optical vortices in self-focusing Kerr nonlinear media. Optics Communications, 282(16), 3349-3355. doi:10.1016/j.optcom.2009.05.037 es_ES
dc.description.references Porras, M. A., & Ramos, F. (2017). Quasi-ideal dynamics of vortex solitons embedded in flattop nonlinear Bessel beams. Optics Letters, 42(17), 3275. doi:10.1364/ol.42.003275 es_ES
dc.description.references Reyna, A. S., & de Araújo, C. B. (2015). Guiding and confinement of light induced by optical vortex solitons in a cubic–quintic medium. Optics Letters, 41(1), 191. doi:10.1364/ol.41.000191 es_ES
dc.description.references Salgueiro, J. R., Carlsson, A. H., Ostrovskaya, E., & Kivshar, Y. (2004). Second-harmonic generation in vortex-induced waveguides. Optics Letters, 29(6), 593. doi:10.1364/ol.29.000593 es_ES
dc.description.references Carlsson, A. H., Malmberg, J. N., Anderson, D., Lisak, M., Ostrovskaya, E. A., Alexander, T. J., & Kivshar, Y. S. (2000). Linear and nonlinear waveguides induced by optical vortex solitons. Optics Letters, 25(9), 660. doi:10.1364/ol.25.000660 es_ES
dc.description.references Shvedov, V. G., Rode, A. V., Izdebskaya, Y. V., Leykam, D., Desyatnikov, A. S., Krolikowski, W., & Kivshar, Y. S. (2010). Laser speckle field as a multiple particle trap. Journal of Optics, 12(12), 124003. doi:10.1088/2040-8978/12/12/124003 es_ES
dc.description.references Chen, M., & Roux, F. S. (2008). Accelerating the annihilation of an optical vortex dipole in a Gaussian beam. Journal of the Optical Society of America A, 25(6), 1279. doi:10.1364/josaa.25.001279 es_ES
dc.description.references Wang, L., Tschudi, T., Halldórsson, T., & Pétursson, P. R. (1998). Speckle reduction in laser projection systems by diffractive optical elements. Applied Optics, 37(10), 1770. doi:10.1364/ao.37.001770 es_ES
dc.description.references Chen, M., & Roux, F. S. (2010). Evolution of the scintillation index and the optical vortex density in speckle fields after removal of the least-squares phase. Journal of the Optical Society of America A, 27(10), 2138. doi:10.1364/josaa.27.002138 es_ES
dc.description.references Porras, M. A., Parola, A., Faccio, D., Dubietis, A., & Trapani, P. D. (2004). Nonlinear Unbalanced Bessel Beams: Stationary Conical Waves Supported by Nonlinear Losses. Physical Review Letters, 93(15). doi:10.1103/physrevlett.93.153902 es_ES
dc.description.references Polesana, P., Franco, M., Couairon, A., Faccio, D., & Di Trapani, P. (2008). Filamentation in Kerr media from pulsed Bessel beams. Physical Review A, 77(4). doi:10.1103/physreva.77.043814 es_ES
dc.description.references Porras, M. A., & Ruiz-Jiménez, C. (2014). Nondiffracting and nonattenuating vortex light beams in media with nonlinear absorption of orbital angular momentum. Journal of the Optical Society of America B, 31(11), 2657. doi:10.1364/josab.31.002657 es_ES
dc.description.references Jukna, V., Milián, C., Xie, C., Itina, T., Dudley, J., Courvoisier, F., & Couairon, A. (2014). Filamentation with nonlinear Bessel vortices. Optics Express, 22(21), 25410. doi:10.1364/oe.22.025410 es_ES
dc.description.references Xie, C., Jukna, V., Milián, C., Giust, R., Ouadghiri-Idrissi, I., Itina, T., … Courvoisier, F. (2015). Tubular filamentation for laser material processing. Scientific Reports, 5(1). doi:10.1038/srep08914 es_ES
dc.description.references Johannisson, P., Anderson, D., Lisak, M., & Marklund, M. (2003). Nonlinear Bessel beams. Optics Communications, 222(1-6), 107-115. doi:10.1016/s0030-4018(03)01603-1 es_ES
dc.description.references Porras, M. A., Carvalho, M., Leblond, H., & Malomed, B. A. (2016). Stabilization of vortex beams in Kerr media by nonlinear absorption. Physical Review A, 94(5). doi:10.1103/physreva.94.053810 es_ES
dc.description.references Žukauskas, A., Malinauskas, M., & Brasselet, E. (2013). Monolithic generators of pseudo-nondiffracting optical vortex beams at the microscale. Applied Physics Letters, 103(18), 181122. doi:10.1063/1.4828662 es_ES
dc.description.references Polesana, P., Faccio, D., Di Trapani, P., Dubietis, A., Piskarskas, A., Couairon, A., & Porras, M. A. (2005). High localization, focal depth and contrast by means of nonlinear Bessel beams. Optics Express, 13(16), 6160. doi:10.1364/opex.13.006160 es_ES
dc.description.references Polesana, P., Dubietis, A., Porras, M. A., Kučinskas, E., Faccio, D., Couairon, A., & Di Trapani, P. (2006). Near-field dynamics of ultrashort pulsed Bessel beams in media with Kerr nonlinearity. Physical Review E, 73(5). doi:10.1103/physreve.73.056612 es_ES
dc.description.references Polesana, P., Couairon, A., Faccio, D., Parola, A., Porras, M. A., Dubietis, A., … Di Trapani, P. (2007). Observation of Conical Waves in Focusing, Dispersive, and Dissipative Kerr Media. Physical Review Letters, 99(22). doi:10.1103/physrevlett.99.223902 es_ES
dc.description.references Porras, M. A., Ruiz-Jiménez, C., & Losada, J. C. (2015). Underlying conservation and stability laws in nonlinear propagation of axicon-generated Bessel beams. Physical Review A, 92(6). doi:10.1103/physreva.92.063826 es_ES


This item appears in the following Collection(s)

Show simple item record