- -

Understanding the unsteady pressure field inside combustion chambers of compression-ignited engines using a computational fluid dynamics approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Understanding the unsteady pressure field inside combustion chambers of compression-ignited engines using a computational fluid dynamics approach

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Torregrosa, A. J. es_ES
dc.contributor.author Broatch, A. es_ES
dc.contributor.author Margot, Xandra es_ES
dc.contributor.author Gómez-Soriano, Josep es_ES
dc.date.accessioned 2020-06-12T03:34:11Z
dc.date.available 2020-06-12T03:34:11Z
dc.date.issued 2018-10-09 es_ES
dc.identifier.issn 1468-0874 es_ES
dc.identifier.uri http://hdl.handle.net/10251/146187
dc.description.abstract [EN] In this article, a numerical methodology for assessing combustion noise in compression ignition engines is described with the specific purpose of analysing the unsteady pressure field inside the combustion chamber. The numerical results show consistent agreement with experimental measurements in both the time and frequency domains. Nonetheless, an exhaustive analysis of the calculation convergence is needed to guarantee an independent solution. These results contribute to the understanding of in-cylinder unsteady processes, especially of those related to combustion chamber resonances, and their effects on the radiated noise levels. The method was applied to different combustion system configurations by modifying the spray angle of the injector, evidencing that controlling the ignition location through this design parameter, it is possible to decrease the combustion noise by minimizing the resonance contribution. Important efficiency losses were, however, observed due to the injector/bowl matching worsening which compromises the performance and emissions levels. es_ES
dc.description.sponsorship The authors want to express their gratitude to CONVERGENT SCIENCE Inc. and Convergent Science GmbH for their kind support for performing the CFD calculations using CONVERGE software. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof International Journal of Engine Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Combustion noise es_ES
dc.subject Computational fluid dynamics modelling es_ES
dc.subject Frequency analysis es_ES
dc.subject Compression ignition engine es_ES
dc.subject Resonance es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Understanding the unsteady pressure field inside combustion chambers of compression-ignited engines using a computational fluid dynamics approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1468087418803030 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ICTS-2012-06/ES/Dotación de infraestructuras científico técnicas para el Centro Integral de Mejora Energética y Medioambiental de Sistemas de Transporte (CiMeT)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Torregrosa, AJ.; Broatch, A.; Margot, X.; Gómez-Soriano, J. (2018). Understanding the unsteady pressure field inside combustion chambers of compression-ignited engines using a computational fluid dynamics approach. International Journal of Engine Research. 1-13. https://doi.org/10.1177/1468087418803030 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1468087418803030 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\373705 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Benajes, J., Novella, R., De Lima, D., & Tribotté, P. (2014). Analysis of combustion concepts in a newly designed two-stroke high-speed direct injection compression ignition engine. International Journal of Engine Research, 16(1), 52-67. doi:10.1177/1468087414562867 es_ES
dc.description.references Costa, M., Bianchi, G. M., Forte, C., & Cazzoli, G. (2014). A Numerical Methodology for the Multi-objective Optimization of the DI Diesel Engine Combustion. Energy Procedia, 45, 711-720. doi:10.1016/j.egypro.2014.01.076 es_ES
dc.description.references Navid, A., Khalilarya, S., & Taghavifar, H. (2016). Comparing multi-objective non-evolutionary NLPQL and evolutionary genetic algorithm optimization of a DI diesel engine: DoE estimation and creating surrogate model. Energy Conversion and Management, 126, 385-399. doi:10.1016/j.enconman.2016.08.014 es_ES
dc.description.references Benajes, J., García, A., Pastor, J. M., & Monsalve-Serrano, J. (2016). Effects of piston bowl geometry on Reactivity Controlled Compression Ignition heat transfer and combustion losses at different engine loads. Energy, 98, 64-77. doi:10.1016/j.energy.2016.01.014 es_ES
dc.description.references Masterton, B., Heffner, H., & Ravizza, R. (1969). The Evolution of Human Hearing. The Journal of the Acoustical Society of America, 45(4), 966-985. doi:10.1121/1.1911574 es_ES
dc.description.references Strahle, W. C. (1978). Combustion noise. Progress in Energy and Combustion Science, 4(3), 157-176. doi:10.1016/0360-1285(78)90002-3 es_ES
dc.description.references Flemming, F., Sadiki, A., & Janicka, J. (2007). Investigation of combustion noise using a LES/CAA hybrid approach. Proceedings of the Combustion Institute, 31(2), 3189-3196. doi:10.1016/j.proci.2006.07.060 es_ES
dc.description.references Klos, D., & Kokjohn, S. L. (2014). Investigation of the sources of combustion instability in low-temperature combustion engines using response surface models. International Journal of Engine Research, 16(3), 419-440. doi:10.1177/1468087414556135 es_ES
dc.description.references Cyclic dispersion in engine combustion—Introduction by the special issue editors. (2015). International Journal of Engine Research, 16(3), 255-259. doi:10.1177/1468087415572740 es_ES
dc.description.references Hickling, R., Feldmaier, D. A., & Sung, S. H. (1979). Knock‐induced cavity resonances in open chamber diesel engines. The Journal of the Acoustical Society of America, 65(6), 1474-1479. doi:10.1121/1.382910 es_ES
dc.description.references Torregrosa, A. J., Broatch, A., Margot, X., Marant, V., & Beauge, Y. (2004). Combustion chamber resonances in direct injection automotive diesel engines: A numerical approach. International Journal of Engine Research, 5(1), 83-91. doi:10.1243/146808704772914264 es_ES
dc.description.references Broatch, A., Margot, X., Gil, A., & Christian Donayre, (José). (2007). Computational study of the sensitivity to ignition characteristics of the resonance in DI diesel engine combustion chambers. Engineering Computations, 24(1), 77-96. doi:10.1108/02644400710718583 es_ES
dc.description.references Eriksson, L. J. (1980). Higher order mode effects in circular ducts and expansion chambers. The Journal of the Acoustical Society of America, 68(2), 545-550. doi:10.1121/1.384768 es_ES
dc.description.references Broatch, A., Margot, X., Novella, R., & Gomez-Soriano, J. (2017). Impact of the injector design on the combustion noise of gasoline partially premixed combustion in a 2-stroke engine. Applied Thermal Engineering, 119, 530-540. doi:10.1016/j.applthermaleng.2017.03.081 es_ES
dc.description.references Tutak, W., & Jamrozik, A. (2016). Validation and optimization of the thermal cycle for a diesel engine by computational fluid dynamics modeling. Applied Mathematical Modelling, 40(13-14), 6293-6309. doi:10.1016/j.apm.2016.02.021 es_ES
dc.description.references Payri, F., Benajes, J., Margot, X., & Gil, A. (2004). CFD modeling of the in-cylinder flow in direct-injection Diesel engines. Computers & Fluids, 33(8), 995-1021. doi:10.1016/j.compfluid.2003.09.003 es_ES
dc.description.references Benajes, J., Novella, R., De Lima, D., & Thein, K. (2017). Impact of injection settings operating with the gasoline Partially Premixed Combustion concept in a 2-stroke HSDI compression ignition engine. Applied Energy, 193, 515-530. doi:10.1016/j.apenergy.2017.02.044 es_ES
dc.description.references Lesieur, M., Métais, O., & Comte, P. (2005). Large-Eddy Simulations of Turbulence. doi:10.1017/cbo9780511755507 es_ES
dc.description.references Pope, S. B. (2004). Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics, 6, 35-35. doi:10.1088/1367-2630/6/1/035 es_ES
dc.description.references Silva, C. F., Leyko, M., Nicoud, F., & Moreau, S. (2013). Assessment of combustion noise in a premixed swirled combustor via Large-Eddy Simulation. Computers & Fluids, 78, 1-9. doi:10.1016/j.compfluid.2010.09.034 es_ES
dc.description.references Jamrozik, A., Tutak, W., Kociszewski, A., & Sosnowski, M. (2013). Numerical simulation of two-stage combustion in SI engine with prechamber. Applied Mathematical Modelling, 37(5), 2961-2982. doi:10.1016/j.apm.2012.07.040 es_ES
dc.description.references Qin, W., Xie, M., Jia, M., Wang, T., & Liu, D. (2014). Large eddy simulation of in-cylinder turbulent flows in a DISI gasoline engine. Applied Mathematical Modelling, 38(24), 5967-5985. doi:10.1016/j.apm.2014.05.004 es_ES
dc.description.references Broatch, A., Margot, X., Novella, R., & Gomez-Soriano, J. (2016). Combustion noise analysis of partially premixed combustion concept using gasoline fuel in a 2-stroke engine. Energy, 107, 612-624. doi:10.1016/j.energy.2016.04.045 es_ES
dc.description.references Torregrosa, A. J., Broatch, A., Martín, J., & Monelletta, L. (2007). Combustion noise level assessment in direct injection Diesel engines by means of in-cylinder pressure components. Measurement Science and Technology, 18(7), 2131-2142. doi:10.1088/0957-0233/18/7/045 es_ES
dc.description.references Payri, F., Broatch, A., Margot, X., & Monelletta, L. (2008). Sound quality assessment of Diesel combustion noise using in-cylinder pressure components. Measurement Science and Technology, 20(1), 015107. doi:10.1088/0957-0233/20/1/015107 es_ES
dc.description.references Ihlenburg, F. (2003). The Medium-Frequency Range in Computational Acoustics: Practical and Numerical Aspects. Journal of Computational Acoustics, 11(02), 175-193. doi:10.1142/s0218396x03001900 es_ES
dc.description.references Lapuerta, M., Armas, O., & Hernández, J. J. (1999). Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas. Applied Thermal Engineering, 19(5), 513-529. doi:10.1016/s1359-4311(98)00075-1 es_ES
dc.description.references Payri, F., Olmeda, P., Martín, J., & García, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005 es_ES
dc.description.references Payri, F., Broatch, A., Tormos, B., & Marant, V. (2005). New methodology for in-cylinder pressure analysis in direct injection diesel engines—application to combustion noise. Measurement Science and Technology, 16(2), 540-547. doi:10.1088/0957-0233/16/2/029 es_ES
dc.description.references Shahlari, A. J., Hocking, C., Kurtz, E., & Ghandhi, J. (2013). Comparison of Compression Ignition Engine Noise Metrics in Low-Temperature Combustion Regimes. SAE International Journal of Engines, 6(1), 541-552. doi:10.4271/2013-01-1659 es_ES
dc.description.references Yakhot, V., & Orszag, S. A. (1986). Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing, 1(1), 3-51. doi:10.1007/bf01061452 es_ES
dc.description.references Redlich, O., & Kwong, J. N. S. (1949). On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions. Chemical Reviews, 44(1), 233-244. doi:10.1021/cr60137a013 es_ES
dc.description.references Issa, R. . (1986). Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics, 62(1), 40-65. doi:10.1016/0021-9991(86)90099-9 es_ES
dc.description.references Dukowicz, J. K. (1980). A particle-fluid numerical model for liquid sprays. Journal of Computational Physics, 35(2), 229-253. doi:10.1016/0021-9991(80)90087-x es_ES
dc.description.references Reitz, R. D., & Beale, J. C. (1999). MODELING SPRAY ATOMIZATION WITH THE KELVIN-HELMHOLTZ/RAYLEIGH-TAYLOR HYBRID MODEL. Atomization and Sprays, 9(6), 623-650. doi:10.1615/atomizspr.v9.i6.40 es_ES
dc.description.references Babajimopoulos, A., Assanis, D. N., Flowers, D. L., Aceves, S. M., & Hessel, R. P. (2005). A fully coupled computational fluid dynamics and multi-zone model with detailed chemical kinetics for the simulation of premixed charge compression ignition engines. International Journal of Engine Research, 6(5), 497-512. doi:10.1243/146808705x30503 es_ES
dc.description.references Pal, P., Keum, S., & Im, H. G. (2015). Assessment of flamelet versus multi-zone combustion modeling approaches for stratified-charge compression ignition engines. International Journal of Engine Research, 17(3), 280-290. doi:10.1177/1468087415571006 es_ES
dc.description.references Torregrosa, A. J., Broatch, A., Gil, A., & Gomez-Soriano, J. (2018). Numerical approach for assessing combustion noise in compression-ignited Diesel engines. Applied Acoustics, 135, 91-100. doi:10.1016/j.apacoust.2018.02.006 es_ES
dc.description.references Torregrosa, A., Olmeda, P., Degraeuwe, B., & Reyes, M. (2006). A concise wall temperature model for DI Diesel engines. Applied Thermal Engineering, 26(11-12), 1320-1327. doi:10.1016/j.applthermaleng.2005.10.021 es_ES
dc.description.references Broatch, A., Javier Lopez, J., García-Tíscar, J., & Gomez-Soriano, J. (2018). Experimental Analysis of Cyclical Dispersion in Compression-Ignited Versus Spark-Ignited Engines and Its Significance for Combustion Noise Numerical Modeling. Journal of Engineering for Gas Turbines and Power, 140(10). doi:10.1115/1.4040287 es_ES
dc.description.references Molina, S., García, A., Pastor, J. M., Belarte, E., & Balloul, I. (2015). Operating range extension of RCCI combustion concept from low to full load in a heavy-duty engine. Applied Energy, 143, 211-227. doi:10.1016/j.apenergy.2015.01.035 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem