- -

Mineralogical evolution of cement pastes at early ages based on thermogravimetric analysis (TGA)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mineralogical evolution of cement pastes at early ages based on thermogravimetric analysis (TGA)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gaviria, X. es_ES
dc.contributor.author Borrachero Rosado, María Victoria es_ES
dc.contributor.author Paya Bernabeu, Jorge Juan es_ES
dc.contributor.author Monzó Balbuena, José Mª es_ES
dc.contributor.author Tobón, J.I. es_ES
dc.date.accessioned 2020-06-12T03:34:16Z
dc.date.available 2020-06-12T03:34:16Z
dc.date.issued 2018-04 es_ES
dc.identifier.issn 1388-6150 es_ES
dc.identifier.uri http://hdl.handle.net/10251/146188
dc.description.abstract [EN] Ordinary thermogravimetric analysis (TG) and high-resolution TG tests were carried out on three different Portland cement pastes to study the phases present during the first day of hydration. Tests were run at 1, 6, 12 and 24 h of hydration, in order to determine the phases at these ages. High-resolution TG tests were used to separate decompositions presented in the 100¿200 C interval. The non-evaporable water determined by TG was used to determine hydration degree for the different ages. The effect of particle size distribution (PSD) on mineralogical evolution was established, as well as the addition of calcite as mineralogical filler. Finer PSD and calcite addition accelerate the hydration process, increasing the hydration degree on the first day of eaction between water and cement. According to high-resolution TG results, it was demonstrated that ettringite was the only decomposed phase in the 100¿200 C interval during the first 6 h of hydration for all studied cements. C-S-H phase starts to appear in all cements after 12 h of hydration. es_ES
dc.description.sponsorship Funding was provided by Colciencias (Grant No. Convocatoria 567-2012). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Thermal Analysis and Calorimetry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject TG es_ES
dc.subject High-resolution TG es_ES
dc.subject Hydration degree es_ES
dc.subject Cement pastes es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Mineralogical evolution of cement pastes at early ages based on thermogravimetric analysis (TGA) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10973-017-6905-0 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COLCIENCIAS//567-2012/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Gaviria, X.; Borrachero Rosado, MV.; Paya Bernabeu, JJ.; Monzó Balbuena, JM.; Tobón, J. (2018). Mineralogical evolution of cement pastes at early ages based on thermogravimetric analysis (TGA). Journal of Thermal Analysis and Calorimetry. 132(1):39-46. https://doi.org/10.1007/s10973-017-6905-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10973-017-6905-0 es_ES
dc.description.upvformatpinicio 39 es_ES
dc.description.upvformatpfin 46 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 132 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\374295 es_ES
dc.contributor.funder Departamento Administrativo de Ciencia, Tecnología e Innovación, Colombia es_ES
dc.description.references Benboudjema F, Meftah JM, Torernti F. Interaction between drying, shrinkage, creep and cracking phenomena in concrete. Eng Struct. 2005;27:239–50. es_ES
dc.description.references Holt E. Contribution of mixture design to chemical and autogenous shrinkage of concrete at early ages. Cem Concr Res. 2005;35:464–72. es_ES
dc.description.references Darquennes A, Staquet S, Delplancke-Ogletree MP, Espion B. Effect of autogenous deformation on the cracking risk of slag cement concretes. Cem Concr Compos. 2011;33:368–79. es_ES
dc.description.references Slowik V, Schmidt M, Fritzsch R. Capillary pressure in fresh cement-based materials and identification of the air entry value. Cem Concr Compos. 2008;30(7):557–65. es_ES
dc.description.references Evju C, Hansen S. Expansive properties of ettringite in a mixture of calcium aluminate cement, Portland cement and ß-calcium sulfate hemihydrates. Cem Concr Res. 2001;31:257–61. es_ES
dc.description.references Bentz DP, Jensen OM, Hansen KK. Olesen, Stang, H. Haecker, C.J. Influence of cement particle-size distribution on early age autogenous strain and stresses in cement-based materials. J Am Ceram Soc. 2001;84(1):129–35. es_ES
dc.description.references Barcelo L, Moranville M, Clavaud B. Autogenous shrinkage of concrete: a balance between autogenous swelling and self-desiccation. Cem Concr Res. 2005;35(1):177–83. es_ES
dc.description.references Bouasker M, Mounanga P, Turcry P, Loukili A, Khelidj A. Chemical shrinkage of cement pastes and mortars at very early age: effect of limestone filler and granular inclusions. Cem Concr Compos. 2008;30(1):13–22. es_ES
dc.description.references Bentz DP. A review of early-age properties of cement-based materials. Cem Concr Res. 2008;38(2):196–204. es_ES
dc.description.references Ozawa T. Controlled rate thermogravimetry. New usefulness of controlled rate thermogravimetry revealed by decomposition of polyimide. J Therm Anal Calorim. 2000;59:375–84. es_ES
dc.description.references Ramachandran VS, Paroli RM, Beaudoin JJ, Delgado AH. Thermal analysis of construction materials. Building materials series. New York: Noyes Publications; 2003. es_ES
dc.description.references Zanier A. High-resolution TG for the characterization of diesel fuel additives. J Therm Anal Calorim. 2001;64:377–84. es_ES
dc.description.references Tobón JI, Payá J, Borrachero MV, Restrepo OJ. Mineralogical evolution of Portland cement blended with silica nanoparticles and its effect on mechanical strength. Constr Build Mater. 2012;36:736–42. es_ES
dc.description.references Singh M, Waghmare S, Kumar V. Characterization of lime plasters used in 16th century Mughal Monument. J Archeol Sci. 2014;42:430–4. es_ES
dc.description.references Majchrzak-Kuçeba I. Thermogravimetry applied to characterization of fly ash-based MCM-41 mesoporous materials. J Therm Anal Calorim. 2012;107:911–21. es_ES
dc.description.references Silva ACM, Gálico DA, Guerra RB, Legendre AO, Rinaldo D, Galhiane MS, Bannach G. Study of some volatile compounds evolved from the thermal decomposition of atenolol. J Therm Anal Calorim. 2014;115:2517–20. es_ES
dc.description.references Rios-Fachal M, Gracia-Fernández C, López-Beceiro J, Gómez-Barreiro S, Tarrío-Saavedra J, Ponton A, Artiaga R. Effect of nanotubes on the thermal stability of polystyrene. J Therm Anal Calorim. 2013;113:481–7. es_ES
dc.description.references Yamarte L, Paxman D, Begum S, Sarkar P, Chambers A. TG measurement of reactivity of candidate oxygen carrier materials. J Therm Anal Calorim. 2014;116:1301–7. es_ES
dc.description.references Borrachero MV, Payá J, Bonilla M, Monzó J. The use of thermogravimetric analysis technique for the characterization of construction materials. The gypsum case. J Therm Anal Calorim. 2008;91(2):503–9. es_ES
dc.description.references Tobón JI, Payá J, Borrachero MV, Soriano L, Restrepo OJ. Determination of the optimum parameters in the high resolution thermogravimetric analysis (HRTG) for cementitious materials. J Therm Anal Calorim. 2012;107:233–9. es_ES
dc.description.references Kuzielova E, Žemlička M, Másilko, J, Palou, M.T. Effect of additives on the performance of Dyckerhoff cement, Class G, submitted to simulated hydrothermal curing. J Therm Anal Calorim. Accepted 29 Oct 2017 es_ES
dc.description.references Genc M, Genc ZK. Microencapsulated myristic acid–fly ash with TiO2 shell as a novel phase change material for building application. J Therm Anal Calorim. Accepted 24 Oct 2017. es_ES
dc.description.references Singh M, Kumar SV, Waghmare SA. The composition and technology of the 3–4th century CE decorative earthen plaster of Pithalkhora caves, India. J Archeol Sci. 2016;7:224–37. es_ES
dc.description.references Liu L, Liu Q, Cao Y, Pan WP. The isothermal studies of char-CO2 gasification using the high-pressure thermo-gravimetric method. J Therm Anal Calorim. 2015;120:1877–82. es_ES
dc.description.references Majchrzak-Kuce I, Bukalak-Gaik D. Regeneration performance of metal–organic frameworks TG-vacuum tests. J Therm Anal Calorim. 2016;125:1461–6. es_ES
dc.description.references Ion RM, Radovici C, Fierascu RC, Fierascu I. Thermal and mineralogical investigations of iron archaeological Materials. J Therm Anal Calorim. 2015;121:1247–53. es_ES
dc.description.references Rupasinghe M, San Nicolas R, Mendis P, Sofi M, Ngo T. Investigation of strength and hydration characteristics in nano-silica incorporated cement paste. Cem Concr Compos. 2017;80:17–30. es_ES
dc.description.references Esteves PL. On the hydration of water-entrained cement–silica systems: combined SEM, XRD and thermal analysis in cement pastes. Thermochim Acta. 2011;518:27–35. es_ES
dc.description.references Riesen R. Adjustment of heating rate for maximum resolution in TG and TMA (MaxRes). J Therm Anal. 1998;53:365–74. es_ES
dc.description.references Lim S, Mondal P. Micro- and nano-scale characterization to study the thermal degradation of cement-based materials. Mater Charact. 2014;92:15–25. es_ES
dc.description.references Gill PS, Sauerbrunn SR, Crowe BS. High resolution thermogravimetry. J Therm Anal. 1992;38:255–66. es_ES
dc.description.references Mounanga P, Khelidj A, Loukili A, Baroghel-Bouny V. Predicting Ca(OH)2 content and chemical shrinkage of hydrating cement pastes using analytical approach. Cem Concr Res. 2004;34:255–65. es_ES
dc.description.references Zeng Q, Li K, Fen-chong T, Dangla P. Determination of cement hydration and pozzolanic reaction extents for fly-ash cement pastes. Constr Build Mater. 2012;27:560–9. es_ES
dc.description.references Parrott LP, Geiker M, Gutteridge WA, Killoh D. Monitoring Portland cement hydration: Comparison of methods. Cem Concr Res. 1990;20:919–26. es_ES
dc.description.references Hewlett PC. Lea’s chemistry of cement and concrete. 4th ed. Oxford: Elsevier Science & Technology Books; 2004. es_ES
dc.description.references ASTM C305 Standard practice for mechanical mixing of hydraulic cement pastes and mortars of plastic consistency. ASTM International, West Conshohocken, PA; 2012. es_ES
dc.description.references Taylor HF. Cement chemistry. 2nd ed. Westminster: Thomas Telford; 1997. es_ES
dc.description.references Nadelman EI, Freas DJ, Kurtis KE. Nano- and microstructural characterization of Portland limestone cement paste. In: Nanotechnology in construction. Proceedings of NICOM 5. 2015. p. 87–92. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem