- -

Effects of embedded cracks and residual stresses on the integrity of a reactor pressure vessel

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Effects of embedded cracks and residual stresses on the integrity of a reactor pressure vessel

Show simple item record

Files in this item

dc.contributor.author Qian, G. es_ES
dc.contributor.author González Albuixech, Vicente Francisco es_ES
dc.contributor.author Niffenegger, Markus es_ES
dc.date.accessioned 2020-06-13T03:32:27Z
dc.date.available 2020-06-13T03:32:27Z
dc.date.issued 2018-08 es_ES
dc.identifier.issn 1350-6307 es_ES
dc.identifier.uri http://hdl.handle.net/10251/146276
dc.description.abstract [EN] One potential challenge to the integrity of the reactor pressure vessel (RPV) of a pressurized water reactor is posed by a pressurized thermal shock (PTS), which is associated with rapid cooling of sections of the hot and still pressurized RPV by injection of relatively cold emergency coolant. PTS transients lead to high tensile circumferential and axial stresses in the RPV wall. If the stress intensity factor (SIF) is large enough, a critical crack may grow. Thus, the RPV has to be assessed against cleavage fracture. In this paper, two kinds of embedded cracks, i.e. semi-elliptical and elliptical crack with depth of 17 mm and length of 102 mm are considered. The extended finite element method (XFEM) is used to model such postulated cracks. The embedded crack with tip in the cladding/base interface causes a high K-I. This is due to the stress discontinuities at the interface between the materials. In the FAVOR (probabilistic fracture mechanics code) calculation, for such cracks the point closest to the inner surface is considered in order to be conservative. However, due to the highly ductile cladding material, it is unlikely that the embedded crack will propagate through the cladding. Thus, it is more appropriate to consider the outer surface point of the crack front. The effect of welding residual stress and cladding/base interface residual stress on the crack driving force is studied. Surface cracks are assumed in the study of residual stresses. Results show that considering realistic welding residual stresses may increase K-I by about 5 MPa.m(0.5), while the cladding/base interface residual stress has a negligible effect on K-I. The reason is that the cladding residual stress is only localized to the interface and it decreases significantly through the vessel wall. Considering welding residual stress increases the Weibull stress and fracture probability of the RPV. es_ES
dc.description.sponsorship The authors are grateful for the financial support of the PROBAB Project provided by the Swiss Federal Nuclear Safety Inspectorate (ENSI) (DIS-Vertrag Nr. H-100668). V.F. Gonzalez-Albuixech is thankful for the research program Juan de la Cierva Incorporacion 2015, IJCI-2015-23245, financed by the Spanish Ministerio de Economia, Industria y Competitividad. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation ENSI/DIS-Vertrag Nr. H-100668 es_ES
dc.relation AGENCIA ESTATAL DE INVESTIGACION/IJCI-2015-23245 es_ES
dc.relation.ispartof Engineering Failure Analysis es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Reactor pressure vessel es_ES
dc.subject Pressurized thermal shock es_ES
dc.subject Welding residual stress es_ES
dc.subject Embedded crack es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Effects of embedded cracks and residual stresses on the integrity of a reactor pressure vessel es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.engfailanal.2018.04.009 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Qian, G.; González Albuixech, VF.; Niffenegger, M. (2018). Effects of embedded cracks and residual stresses on the integrity of a reactor pressure vessel. Engineering Failure Analysis. 90:451-462. https://doi.org/10.1016/j.engfailanal.2018.04.009 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.engfailanal.2018.04.009 es_ES
dc.description.upvformatpinicio 451 es_ES
dc.description.upvformatpfin 462 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 90 es_ES
dc.relation.pasarela S\356982 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Eidgenössisches Nuklearsicherheitsinspektorat es_ES


This item appears in the following Collection(s)

Show simple item record