- -

A Knowledge-Based Weighted KNN for Detecting Irony in Twitter

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Knowledge-Based Weighted KNN for Detecting Irony in Twitter

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hernandez-Farias, Delia Irazu es_ES
dc.contributor.author Montes Gomez, Manuel es_ES
dc.contributor.author Escalante, Hugo es_ES
dc.contributor.author Rosso, Paolo es_ES
dc.contributor.author Patti, Viviana es_ES
dc.date.accessioned 2020-06-13T03:32:32Z
dc.date.available 2020-06-13T03:32:32Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0302-9743 es_ES
dc.identifier.uri http://hdl.handle.net/10251/146278
dc.description.abstract [EN] In this work, we propose a variant of a well-known instancebased algorithm: WKNN. Our idea is to exploit task-dependent features in order to calculate the weight of the instances according to a novel paradigm: the Textual Attraction Force, that serves to quantify the degree of relatedness between documents. The proposed method was applied to a challenging text classification task: irony detection. We experimented with corpora in the state of the art. The obtained results show that despite being a simple approach, our method is competitive with respect to more advanced techniques. es_ES
dc.description.sponsorship This research was funded by CONACYT project FC 2016-2410. The work of P. Rosso has been funded by the SomEMBED TIN2015-71147-C2-1-P MINECO research project. The work of V. Patti was partially funded by Progetto di Ateneo/CSP 2016 (IhatePrejudice, S1618_L2_BOSC_01). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Lecture Notes in Computer Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Instance-based algorithm es_ES
dc.subject WKNN es_ES
dc.subject Irony detection es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title A Knowledge-Based Weighted KNN for Detecting Irony in Twitter es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1007/978-3-030-04497-8_16 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//FC 2016-2410/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2015-71147-C2-1-P/ES/COMPRENSION DEL LENGUAJE EN LOS MEDIOS DE COMUNICACION SOCIAL - REPRESENTANDO CONTEXTOS DE FORMA CONTINUA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNITO//S1618_L2_BOSC_01/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Hernandez-Farias, DI.; Montes Gomez, M.; Escalante, H.; Rosso, P.; Patti, V. (2018). A Knowledge-Based Weighted KNN for Detecting Irony in Twitter. Lecture Notes in Computer Science. 11289:1-13. https://doi.org/10.1007/978-3-030-04497-8_16 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 17th Mexican International Conference on Artificial Intelligence (MICAI 2018) es_ES
dc.relation.conferencedate Octubre 22-27,2018 es_ES
dc.relation.conferenceplace Guadalajara, Mexico es_ES
dc.relation.publisherversion https://doi.org/10.1007/978-3-030-04497-8_16 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11289 es_ES
dc.relation.pasarela S\384892 es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.contributor.funder Università degli Studi di Torino es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.description.references Barbieri, F., Basile, V., Croce, D., Nissim, M., Novielli, N., Patti, V.: Overview of the Evalita 2016 sentiment polarity classification task. In: Proceedings of Third Italian Conference on Computational Linguistics, vol. 1749. CEUR-WS.org (2016) es_ES
dc.description.references Basile, V., Bolioli, A., Nissim, M., Patti, V., Rosso, P.: Overview of the Evalita 2014 sentiment polarity classification task. In: Proceedings of the First Italian Conference on Computational Linguistics, pp. 50–57 (2014) es_ES
dc.description.references Brysbaert, M., Warriner, A.B., Kuperman, V.: Concreteness ratings for 40 thousand generally known English word lemmas. Behav. Res. Met. 46(3), 904–911 (2014) es_ES
dc.description.references Cambria, E., Hussain, A.: Sentic Computing, vol. 1. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23654-4 es_ES
dc.description.references Cambria, E., Olsher, D., Rajagopal, D.: SenticNet 3: a common and common-sense knowledge base for cognition-driven sentiment analysis. In: Proceedings of AAAI Conference on Artificial Intelligence, pp. 1515–1521 (2014) es_ES
dc.description.references Dudani, S.A.: The distance-weighted k-nearest-neighbor rule. IEEE Trans. Syst., Man, Cybern. SMC 6(4), 325–327 (1976) es_ES
dc.description.references Ghosh, A., et al.: SemEval-2015 task 11: sentiment analysis of figurative language in Twitter. In: Proceedings of the 9th International Workshop on Semantic Evaluation, pp. 470–478 (2015) es_ES
dc.description.references Giora, R., Fein, O.: Irony: context and salience. Metaphor. Symb. 14(4), 241–257 (1999) es_ES
dc.description.references Gou, J., Du, L., Zhang, Y., Xiong, T.: A new distance-weighted k-nearest neighbor classifier. J. Inform. Comp. Sci. 9(6), 1429–1436 (2012) es_ES
dc.description.references Grice, H.P.: Logic and conversation. In: Cole, P., Morgan, J.L. (eds.) Syntax and Semantics: Volume 3: Speech Acts, pp. 41–58. Academic Press, San Diego (1975) es_ES
dc.description.references Hernández Farías, D.I., Patti, V., Rosso, P.: Irony detection in Twitter: the role of affective content. ACM Trans. Internet Technol. 16(3), 19:1–19:24 (2016) es_ES
dc.description.references Hernández Farías, D.I., Rosso, P.: Irony, sarcasm, and sentiment analysis. chapter 7. In: Pozzi, F.A., Fersini, E., Messina, E., Liu, B. (eds.) Sentiment Analysis in Social Networks, pp. 113–127. Morgan Kaufmann (2016) es_ES
dc.description.references Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the 10th SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 168–177 (2004) es_ES
dc.description.references Joshi, A., Bhattacharyya, P., Carman, M.J.: Automatic sarcasm detection: a survey. ACM Comput. Surv. 50(5), 73:1–73:22 (2017) es_ES
dc.description.references Mitchell, T.M.: Machine learning and data min. Com. ACM 42(11), 30–36 (1999) es_ES
dc.description.references Mohammad, S.M., Turney, P.D.: Crowdsourcing a word-emotion association lexicon. Comput. Intell. 29(3), 436–465 (2013) es_ES
dc.description.references Mohammad, S.M., Zhu, X., Kiritchenko, S., Martin, J.: Sentiment, emotion, purpose, and style in electoral tweets. Inf. Process. Manag. 51(4), 480–499 (2015) es_ES
dc.description.references Plutchik, R.: The nature of emotions. Am. Sci. 89(4), 344–350 (2001) es_ES
dc.description.references Reyes, A., Rosso, P., Veale, T.: A multidimensional approach for detecting irony in Twitter. Lang. Resour. Eval. 47(1), 239–268 (2013) es_ES
dc.description.references Riloff, E., Qadir, A., Surve, P., Silva, L.D., Gilbert, N., Huang, R.: Sarcasm as contrast between a positive sentiment and negative situation. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 704–714. ACL (2013) es_ES
dc.description.references Skalicky, S., Crossley, S.: A statistical analysis of satirical Amazon.com product reviews. Eur. J. Humour Res. 2, 66–85 (2015) es_ES
dc.description.references Van Hee, C., Lefever, E., Hoste, V.: SemEval-2018 task 3: irony detection in English tweets. In: Proceedings of the 12th International Workshop on Semantic Evaluation, SemEval-2018. ACL, June 2018 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem