Mostrar el registro sencillo del ítem
dc.contributor.author | Min, Rui | es_ES |
dc.contributor.author | Ortega Tamarit, Beatriz | es_ES |
dc.contributor.author | Broadway, Christian | es_ES |
dc.contributor.author | Caucheteur, Christophe | es_ES |
dc.contributor.author | Woyessa, G. | es_ES |
dc.contributor.author | Bang, Ole | es_ES |
dc.contributor.author | Antunes, Paulo | es_ES |
dc.contributor.author | Marques, Carlos | es_ES |
dc.date.accessioned | 2020-06-13T03:33:00Z | |
dc.date.available | 2020-06-13T03:33:00Z | |
dc.date.issued | 2018-12-24 | es_ES |
dc.identifier.issn | 1094-4087 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/146292 | |
dc.description | © 2018 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited" | es_ES |
dc.description.abstract | [EN] We obtained chirped gratings by performing hot water gradient thermal annealing of uniform poly (methylmethacrylate) (PMMA) microstructured polymer optical fiber Bragg gratings (POFBGs). The proposed method's simplicity is one of its main advantages because no special phase mask or additional etching are needed. It not only enables easy control tuning of the central wavelength and chirp characteristics, but it also leads to obtain flexible grating response, compared with tapered chirped POFBGs. Therefore, a flexible and low-cost chirped POFBG devices fabrication technique has been presented by using a single uniform phase mask. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement | es_ES |
dc.description.sponsorship | This work was supported by Fundação para a Ciência e Tecnologia (FCT)/MEC through national funds, when applicable co-funded by FEDER PT2020 partnership agreement under the project UID/EEA/50008/2013 and the Research Excellence Award Programme GVA PROMETEO 2017/103 Future Microwave Photonics Technologies and applications, Science Foundation of Heilongjiang Province of China (F2018026). C. A. F. Marques also acknowledges the financial support from FCT through the fellowship SFRH/BPD/109458/2015. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Optical Society | es_ES |
dc.relation.ispartof | Optics Express | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | Blue shift | es_ES |
dc.subject | Fiber Bragg gratings | es_ES |
dc.subject | Polymer optical fibers | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Hot water-assisted fabrication of chirped polymer optical fiber Bragg gratings | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1364/OE.26.034655 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/5876/147328/PT/Instituto de Telecomunicações/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/Natural Science Foundation of Heilongjiang Province//F2018026/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F109458%2F2015/PT/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F012/ES/TECNOLOGIAS DE NUEVA GENERACION EN FOTONICA DE MICROONDAS (NEXT GENERATION MICROWAVE PHOTONIC TECHNOLOGIES)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Min, R.; Ortega Tamarit, B.; Broadway, C.; Caucheteur, C.; Woyessa, G.; Bang, O.; Antunes, P.... (2018). Hot water-assisted fabrication of chirped polymer optical fiber Bragg gratings. Optics Express. 26(26):34655-34664. https://doi.org/10.1364/OE.26.034655 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1364/OE.26.034655 | es_ES |
dc.description.upvformatpinicio | 34655 | es_ES |
dc.description.upvformatpfin | 34664 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 26 | es_ES |
dc.description.issue | 26 | es_ES |
dc.identifier.pmid | 30650886 | es_ES |
dc.relation.pasarela | S\384184 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Natural Science Foundation of Heilongjiang Province | es_ES |
dc.contributor.funder | Fundação para a Ciência e a Tecnologia, Portugal | es_ES |
dc.description.references | Bonefacino, J., Tam, H.-Y., Glen, T. S., Cheng, X., Pun, C.-F. J., Wang, J., … Boles, S. T. (2017). Ultra-fast polymer optical fibre Bragg grating inscription for medical devices. Light: Science & Applications, 7(3), 17161-17161. doi:10.1038/lsa.2017.161 | es_ES |
dc.description.references | Cheng, X., Bonefacino, J., Guan, B. O., & Tam, H. Y. (2018). All-polymer fiber-optic pH sensor. Optics Express, 26(11), 14610. doi:10.1364/oe.26.014610 | es_ES |
dc.description.references | Emiliyanov, G., Jensen, J. B., Bang, O., Hoiby, P. E., Pedersen, L. H., Kjær, E. M., & Lindvold, L. (2007). Localized biosensing with Topas microstructured polymer optical fiber. Optics Letters, 32(5), 460. doi:10.1364/ol.32.000460 | es_ES |
dc.description.references | Hassan, H. U., Janting, J., Aasmul, S., & Bang, O. (2016). Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing. IEEE Sensors Journal, 1-1. doi:10.1109/jsen.2016.2606580 | es_ES |
dc.description.references | Xiong, Z., Peng, G. D., Wu, B., & Chu, P. L. (1999). Highly tunable Bragg gratings in single-mode polymer optical fibers. IEEE Photonics Technology Letters, 11(3), 352-354. doi:10.1109/68.748232 | es_ES |
dc.description.references | Lacraz, A., Polis, M., Theodosiou, A., Koutsides, C., & Kalli, K. (2015). Femtosecond Laser Inscribed Bragg Gratings in Low Loss CYTOP Polymer Optical Fiber. IEEE Photonics Technology Letters, 27(7), 693-696. doi:10.1109/lpt.2014.2386692 | es_ES |
dc.description.references | Woyessa, G., Fasano, A., Markos, C., Stefani, A., Rasmussen, H. K., & Bang, O. (2016). Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing. Optical Materials Express, 7(1), 286. doi:10.1364/ome.7.000286 | es_ES |
dc.description.references | Fasano, A., Woyessa, G., Stajanca, P., Markos, C., Stefani, A., Nielsen, K., … Bang, O. (2016). Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors. Optical Materials Express, 6(2), 649. doi:10.1364/ome.6.000649 | es_ES |
dc.description.references | Markos, C., Stefani, A., Nielsen, K., Rasmussen, H. K., Yuan, W., & Bang, O. (2013). High-T_g TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees. Optics Express, 21(4), 4758. doi:10.1364/oe.21.004758 | es_ES |
dc.description.references | Woyessa, G., Fasano, A., Stefani, A., Markos, C., Nielsen, K., Rasmussen, H. K., & Bang, O. (2016). Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors. Optics Express, 24(2), 1253. doi:10.1364/oe.24.001253 | es_ES |
dc.description.references | Johnson, I. P., Webb, D. J., Kalli, K., Large, M. C. J., & Argyros, A. (2010). Multiplexed FBG sensor recorded in multimode microstructured polymer optical fibre. Photonic Crystal Fibers IV. doi:10.1117/12.854410 | es_ES |
dc.description.references | Woyessa, G., Nielsen, K., Stefani, A., Markos, C., & Bang, O. (2016). Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor. Optics Express, 24(2), 1206. doi:10.1364/oe.24.001206 | es_ES |
dc.description.references | Yuan, W., Stefani, A., & Bang, O. (2012). Tunable Polymer Fiber Bragg Grating (FBG) Inscription: Fabrication of Dual-FBG Temperature Compensated Polymer Optical Fiber Strain Sensors. IEEE Photonics Technology Letters, 24(5), 401-403. doi:10.1109/lpt.2011.2179927 | es_ES |
dc.description.references | Reyes, P. I., Litchinitser, N., Sumetsky, M., & Westbrook, P. S. (2005). 160-Gb/s tunable dispersion slope compensator using a chirped fiber Bragg grating and a quadratic heater. IEEE Photonics Technology Letters, 17(4), 831-833. doi:10.1109/lpt.2005.843690 | es_ES |
dc.description.references | Tosi, D., Macchi, E. G., Gallati, M., Braschi, G., Cigada, A., Rossi, S., … Lewis, E. (2014). Fiber-optic chirped FBG for distributed thermal monitoring of ex-vivo radiofrequency ablation of liver. Biomedical Optics Express, 5(6), 1799. doi:10.1364/boe.5.001799 | es_ES |
dc.description.references | Shan, D., Zhang, C., Kalaba, S., Mehta, N., Kim, G. B., Liu, Z., & Yang, J. (2017). Flexible biodegradable citrate-based polymeric step-index optical fiber. Biomaterials, 143, 142-148. doi:10.1016/j.biomaterials.2017.08.003 | es_ES |
dc.description.references | Hongbo Liu, Huiyong Liu, Gangding Peng, & Whitbread, T. W. (2005). Tunable dispersion using linearly chirped polymer optical fiber Bragg gratings with fixed center wavelength. IEEE Photonics Technology Letters, 17(2), 411-413. doi:10.1109/lpt.2004.839378 | es_ES |
dc.description.references | Marques, C. A. F., Antunes, P., Mergo, P., Webb, D. J., & Andre, P. (2017). Chirped Bragg Gratings in PMMA Step-Index Polymer Optical Fiber. IEEE Photonics Technology Letters, 29(6), 500-503. doi:10.1109/lpt.2017.2662219 | es_ES |
dc.description.references | Min, R., Ortega, B., & Marques, C. (2018). Fabrication of tunable chirped mPOF Bragg gratings using a uniform phase mask. Optics Express, 26(4), 4411. doi:10.1364/oe.26.004411 | es_ES |
dc.description.references | Korganbayev, S., Min, R., Jelbuldina, M., Hu, X., Caucheteur, C., Bang, O., … Tosi, D. (2018). Thermal Profile Detection Through High-Sensitivity Fiber Optic Chirped Bragg Grating on Microstructured PMMA Fiber. Journal of Lightwave Technology, 36(20), 4723-4729. doi:10.1109/jlt.2018.2864113 | es_ES |
dc.description.references | Min, R., Korganbayev, S., Molardi, C., Broadway, C., Hu, X., Caucheteur, C., … Ortega, B. (2018). Largely tunable dispersion chirped polymer FBG. Optics Letters, 43(20), 5106. doi:10.1364/ol.43.005106 | es_ES |
dc.description.references | Fasano, A., Woyessa, G., Janting, J., Rasmussen, H. K., & Bang, O. (2017). Solution-Mediated Annealing of Polymer Optical Fiber Bragg Gratings at Room Temperature. IEEE Photonics Technology Letters, 29(8), 687-690. doi:10.1109/lpt.2017.2678481 | es_ES |
dc.description.references | Pospori, A., Marques, C. A. F., Sagias, G., Lamela-Rivera, H., & Webb, D. J. (2018). Novel thermal annealing methodology for permanent tuning polymer optical fiber Bragg gratings to longer wavelengths. Optics Express, 26(2), 1411. doi:10.1364/oe.26.001411 | es_ES |
dc.description.references | Pospori, A., Marques, C. A. F., Sáez-Rodríguez, D., Nielsen, K., Bang, O., & Webb, D. J. (2017). Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity. Optical Fiber Technology, 36, 68-74. doi:10.1016/j.yofte.2017.02.006 | es_ES |
dc.description.references | Stajanca, P., Cetinkaya, O., Schukar, M., Mergo, P., Webb, D. J., & Krebber, K. (2016). Molecular alignment relaxation in polymer optical fibers for sensing applications. Optical Fiber Technology, 28, 11-17. doi:10.1016/j.yofte.2015.12.006 | es_ES |
dc.description.references | Hu, X., Woyessa, G., Kinet, D., Janting, J., Nielsen, K., Bang, O., & Caucheteur, C. (2017). BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription. Optics Letters, 42(11), 2209. doi:10.1364/ol.42.002209 | es_ES |
dc.description.references | Pospori, A., Marques, C. A. F., Bang, O., Webb, D. J., & André, P. (2017). Polymer optical fiber Bragg grating inscription with a single UV laser pulse. Optics Express, 25(8), 9028. doi:10.1364/oe.25.009028 | es_ES |
dc.description.references | Saez-Rodriguez, D., Min, R., Ortega, B., Nielsen, K., & Webb, D. J. (2016). Passive and Portable Polymer Optical Fiber Cleaver. IEEE Photonics Technology Letters, 28(24), 2834-2837. doi:10.1109/lpt.2016.2623419 | es_ES |
dc.description.references | Zhang, W., Webb, D. J., & Peng, G.-D. (2012). Investigation Into Time Response of Polymer Fiber Bragg Grating Based Humidity Sensors. Journal of Lightwave Technology, 30(8), 1090-1096. doi:10.1109/jlt.2011.2169941 | es_ES |
dc.description.references | Leal-Junior, A. G., Theodosiou, A., Marques, C., Pontes, M. J., Kalli, K., & Frizera, A. (2018). Compensation Method for Temperature Cross-Sensitivity in Transverse Force Applications With FBG Sensors in POFs. Journal of Lightwave Technology, 36(17), 3660-3665. doi:10.1109/jlt.2018.2848704 | es_ES |
dc.description.references | Pereira, L. M., Pospori, A., Antunes, P., Domingues, M. F., Marques, S., Bang, O., … Marques, C. A. F. (2017). Phase-Shifted Bragg Grating Inscription in PMMA Microstructured POF Using 248-nm UV Radiation. Journal of Lightwave Technology, 35(23), 5176-5184. doi:10.1109/jlt.2017.2771436 | es_ES |