- -

Hot water-assisted fabrication of chirped polymer optical fiber Bragg gratings

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hot water-assisted fabrication of chirped polymer optical fiber Bragg gratings

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Min, Rui es_ES
dc.contributor.author Ortega Tamarit, Beatriz es_ES
dc.contributor.author Broadway, Christian es_ES
dc.contributor.author Caucheteur, Christophe es_ES
dc.contributor.author Woyessa, G. es_ES
dc.contributor.author Bang, Ole es_ES
dc.contributor.author Antunes, Paulo es_ES
dc.contributor.author Marques, Carlos es_ES
dc.date.accessioned 2020-06-13T03:33:00Z
dc.date.available 2020-06-13T03:33:00Z
dc.date.issued 2018-12-24 es_ES
dc.identifier.issn 1094-4087 es_ES
dc.identifier.uri http://hdl.handle.net/10251/146292
dc.description © 2018 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited" es_ES
dc.description.abstract [EN] We obtained chirped gratings by performing hot water gradient thermal annealing of uniform poly (methylmethacrylate) (PMMA) microstructured polymer optical fiber Bragg gratings (POFBGs). The proposed method's simplicity is one of its main advantages because no special phase mask or additional etching are needed. It not only enables easy control tuning of the central wavelength and chirp characteristics, but it also leads to obtain flexible grating response, compared with tapered chirped POFBGs. Therefore, a flexible and low-cost chirped POFBG devices fabrication technique has been presented by using a single uniform phase mask. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement es_ES
dc.description.sponsorship This work was supported by Fundação para a Ciência e Tecnologia (FCT)/MEC through national funds, when applicable co-funded by FEDER PT2020 partnership agreement under the project UID/EEA/50008/2013 and the Research Excellence Award Programme GVA PROMETEO 2017/103 Future Microwave Photonics Technologies and applications, Science Foundation of Heilongjiang Province of China (F2018026). C. A. F. Marques also acknowledges the financial support from FCT through the fellowship SFRH/BPD/109458/2015. es_ES
dc.language Inglés es_ES
dc.publisher The Optical Society es_ES
dc.relation.ispartof Optics Express es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject Blue shift es_ES
dc.subject Fiber Bragg gratings es_ES
dc.subject Polymer optical fibers es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Hot water-assisted fabrication of chirped polymer optical fiber Bragg gratings es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OE.26.034655 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/5876/147328/PT/Instituto de Telecomunicações/
dc.relation.projectID info:eu-repo/grantAgreement/Natural Science Foundation of Heilongjiang Province//F2018026/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F109458%2F2015/PT/
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F012/ES/TECNOLOGIAS DE NUEVA GENERACION EN FOTONICA DE MICROONDAS (NEXT GENERATION MICROWAVE PHOTONIC TECHNOLOGIES)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Min, R.; Ortega Tamarit, B.; Broadway, C.; Caucheteur, C.; Woyessa, G.; Bang, O.; Antunes, P.... (2018). Hot water-assisted fabrication of chirped polymer optical fiber Bragg gratings. Optics Express. 26(26):34655-34664. https://doi.org/10.1364/OE.26.034655 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1364/OE.26.034655 es_ES
dc.description.upvformatpinicio 34655 es_ES
dc.description.upvformatpfin 34664 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 26 es_ES
dc.description.issue 26 es_ES
dc.identifier.pmid 30650886 es_ES
dc.relation.pasarela S\384184 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Natural Science Foundation of Heilongjiang Province es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal es_ES
dc.description.references Bonefacino, J., Tam, H.-Y., Glen, T. S., Cheng, X., Pun, C.-F. J., Wang, J., … Boles, S. T. (2017). Ultra-fast polymer optical fibre Bragg grating inscription for medical devices. Light: Science & Applications, 7(3), 17161-17161. doi:10.1038/lsa.2017.161 es_ES
dc.description.references Cheng, X., Bonefacino, J., Guan, B. O., & Tam, H. Y. (2018). All-polymer fiber-optic pH sensor. Optics Express, 26(11), 14610. doi:10.1364/oe.26.014610 es_ES
dc.description.references Emiliyanov, G., Jensen, J. B., Bang, O., Hoiby, P. E., Pedersen, L. H., Kjær, E. M., & Lindvold, L. (2007). Localized biosensing with Topas microstructured polymer optical fiber. Optics Letters, 32(5), 460. doi:10.1364/ol.32.000460 es_ES
dc.description.references Hassan, H. U., Janting, J., Aasmul, S., & Bang, O. (2016). Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing. IEEE Sensors Journal, 1-1. doi:10.1109/jsen.2016.2606580 es_ES
dc.description.references Xiong, Z., Peng, G. D., Wu, B., & Chu, P. L. (1999). Highly tunable Bragg gratings in single-mode polymer optical fibers. IEEE Photonics Technology Letters, 11(3), 352-354. doi:10.1109/68.748232 es_ES
dc.description.references Lacraz, A., Polis, M., Theodosiou, A., Koutsides, C., & Kalli, K. (2015). Femtosecond Laser Inscribed Bragg Gratings in Low Loss CYTOP Polymer Optical Fiber. IEEE Photonics Technology Letters, 27(7), 693-696. doi:10.1109/lpt.2014.2386692 es_ES
dc.description.references Woyessa, G., Fasano, A., Markos, C., Stefani, A., Rasmussen, H. K., & Bang, O. (2016). Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing. Optical Materials Express, 7(1), 286. doi:10.1364/ome.7.000286 es_ES
dc.description.references Fasano, A., Woyessa, G., Stajanca, P., Markos, C., Stefani, A., Nielsen, K., … Bang, O. (2016). Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors. Optical Materials Express, 6(2), 649. doi:10.1364/ome.6.000649 es_ES
dc.description.references Markos, C., Stefani, A., Nielsen, K., Rasmussen, H. K., Yuan, W., & Bang, O. (2013). High-T_g TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees. Optics Express, 21(4), 4758. doi:10.1364/oe.21.004758 es_ES
dc.description.references Woyessa, G., Fasano, A., Stefani, A., Markos, C., Nielsen, K., Rasmussen, H. K., & Bang, O. (2016). Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors. Optics Express, 24(2), 1253. doi:10.1364/oe.24.001253 es_ES
dc.description.references Johnson, I. P., Webb, D. J., Kalli, K., Large, M. C. J., & Argyros, A. (2010). Multiplexed FBG sensor recorded in multimode microstructured polymer optical fibre. Photonic Crystal Fibers IV. doi:10.1117/12.854410 es_ES
dc.description.references Woyessa, G., Nielsen, K., Stefani, A., Markos, C., & Bang, O. (2016). Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor. Optics Express, 24(2), 1206. doi:10.1364/oe.24.001206 es_ES
dc.description.references Yuan, W., Stefani, A., & Bang, O. (2012). Tunable Polymer Fiber Bragg Grating (FBG) Inscription: Fabrication of Dual-FBG Temperature Compensated Polymer Optical Fiber Strain Sensors. IEEE Photonics Technology Letters, 24(5), 401-403. doi:10.1109/lpt.2011.2179927 es_ES
dc.description.references Reyes, P. I., Litchinitser, N., Sumetsky, M., & Westbrook, P. S. (2005). 160-Gb/s tunable dispersion slope compensator using a chirped fiber Bragg grating and a quadratic heater. IEEE Photonics Technology Letters, 17(4), 831-833. doi:10.1109/lpt.2005.843690 es_ES
dc.description.references Tosi, D., Macchi, E. G., Gallati, M., Braschi, G., Cigada, A., Rossi, S., … Lewis, E. (2014). Fiber-optic chirped FBG for distributed thermal monitoring of ex-vivo radiofrequency ablation of liver. Biomedical Optics Express, 5(6), 1799. doi:10.1364/boe.5.001799 es_ES
dc.description.references Shan, D., Zhang, C., Kalaba, S., Mehta, N., Kim, G. B., Liu, Z., & Yang, J. (2017). Flexible biodegradable citrate-based polymeric step-index optical fiber. Biomaterials, 143, 142-148. doi:10.1016/j.biomaterials.2017.08.003 es_ES
dc.description.references Hongbo Liu, Huiyong Liu, Gangding Peng, & Whitbread, T. W. (2005). Tunable dispersion using linearly chirped polymer optical fiber Bragg gratings with fixed center wavelength. IEEE Photonics Technology Letters, 17(2), 411-413. doi:10.1109/lpt.2004.839378 es_ES
dc.description.references Marques, C. A. F., Antunes, P., Mergo, P., Webb, D. J., & Andre, P. (2017). Chirped Bragg Gratings in PMMA Step-Index Polymer Optical Fiber. IEEE Photonics Technology Letters, 29(6), 500-503. doi:10.1109/lpt.2017.2662219 es_ES
dc.description.references Min, R., Ortega, B., & Marques, C. (2018). Fabrication of tunable chirped mPOF Bragg gratings using a uniform phase mask. Optics Express, 26(4), 4411. doi:10.1364/oe.26.004411 es_ES
dc.description.references Korganbayev, S., Min, R., Jelbuldina, M., Hu, X., Caucheteur, C., Bang, O., … Tosi, D. (2018). Thermal Profile Detection Through High-Sensitivity Fiber Optic Chirped Bragg Grating on Microstructured PMMA Fiber. Journal of Lightwave Technology, 36(20), 4723-4729. doi:10.1109/jlt.2018.2864113 es_ES
dc.description.references Min, R., Korganbayev, S., Molardi, C., Broadway, C., Hu, X., Caucheteur, C., … Ortega, B. (2018). Largely tunable dispersion chirped polymer FBG. Optics Letters, 43(20), 5106. doi:10.1364/ol.43.005106 es_ES
dc.description.references Fasano, A., Woyessa, G., Janting, J., Rasmussen, H. K., & Bang, O. (2017). Solution-Mediated Annealing of Polymer Optical Fiber Bragg Gratings at Room Temperature. IEEE Photonics Technology Letters, 29(8), 687-690. doi:10.1109/lpt.2017.2678481 es_ES
dc.description.references Pospori, A., Marques, C. A. F., Sagias, G., Lamela-Rivera, H., & Webb, D. J. (2018). Novel thermal annealing methodology for permanent tuning polymer optical fiber Bragg gratings to longer wavelengths. Optics Express, 26(2), 1411. doi:10.1364/oe.26.001411 es_ES
dc.description.references Pospori, A., Marques, C. A. F., Sáez-Rodríguez, D., Nielsen, K., Bang, O., & Webb, D. J. (2017). Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity. Optical Fiber Technology, 36, 68-74. doi:10.1016/j.yofte.2017.02.006 es_ES
dc.description.references Stajanca, P., Cetinkaya, O., Schukar, M., Mergo, P., Webb, D. J., & Krebber, K. (2016). Molecular alignment relaxation in polymer optical fibers for sensing applications. Optical Fiber Technology, 28, 11-17. doi:10.1016/j.yofte.2015.12.006 es_ES
dc.description.references Hu, X., Woyessa, G., Kinet, D., Janting, J., Nielsen, K., Bang, O., & Caucheteur, C. (2017). BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription. Optics Letters, 42(11), 2209. doi:10.1364/ol.42.002209 es_ES
dc.description.references Pospori, A., Marques, C. A. F., Bang, O., Webb, D. J., & André, P. (2017). Polymer optical fiber Bragg grating inscription with a single UV laser pulse. Optics Express, 25(8), 9028. doi:10.1364/oe.25.009028 es_ES
dc.description.references Saez-Rodriguez, D., Min, R., Ortega, B., Nielsen, K., & Webb, D. J. (2016). Passive and Portable Polymer Optical Fiber Cleaver. IEEE Photonics Technology Letters, 28(24), 2834-2837. doi:10.1109/lpt.2016.2623419 es_ES
dc.description.references Zhang, W., Webb, D. J., & Peng, G.-D. (2012). Investigation Into Time Response of Polymer Fiber Bragg Grating Based Humidity Sensors. Journal of Lightwave Technology, 30(8), 1090-1096. doi:10.1109/jlt.2011.2169941 es_ES
dc.description.references Leal-Junior, A. G., Theodosiou, A., Marques, C., Pontes, M. J., Kalli, K., & Frizera, A. (2018). Compensation Method for Temperature Cross-Sensitivity in Transverse Force Applications With FBG Sensors in POFs. Journal of Lightwave Technology, 36(17), 3660-3665. doi:10.1109/jlt.2018.2848704 es_ES
dc.description.references Pereira, L. M., Pospori, A., Antunes, P., Domingues, M. F., Marques, S., Bang, O., … Marques, C. A. F. (2017). Phase-Shifted Bragg Grating Inscription in PMMA Microstructured POF Using 248-nm UV Radiation. Journal of Lightwave Technology, 35(23), 5176-5184. doi:10.1109/jlt.2017.2771436 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem