dc.contributor.author |
Díez Niclós, Mª José Teresa De Jesús
|
es_ES |
dc.contributor.author |
de la Rosa, L.
|
es_ES |
dc.contributor.author |
Martín, Isaura
|
es_ES |
dc.contributor.author |
Guasch, Luis
|
es_ES |
dc.contributor.author |
Cartea, María Elena
|
es_ES |
dc.contributor.author |
Mallor, Cristina
|
es_ES |
dc.contributor.author |
Casals, Joan
|
es_ES |
dc.contributor.author |
Simo, Joan
|
es_ES |
dc.contributor.author |
Rivera, Ana
|
es_ES |
dc.contributor.author |
Anastasio, German
|
es_ES |
dc.contributor.author |
Prohens Tomás, Jaime
|
es_ES |
dc.contributor.author |
Soler Aleixandre, Salvador
|
es_ES |
dc.contributor.author |
Blanca Postigo, José Miguel
|
es_ES |
dc.contributor.author |
Valcarcel Germes, José Vicente
|
es_ES |
dc.contributor.author |
Casañas Artigas, Francesc
|
es_ES |
dc.date.accessioned |
2020-06-13T03:33:14Z |
|
dc.date.available |
2020-06-13T03:33:14Z |
|
dc.date.issued |
2018-12-04 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/146297 |
|
dc.description.abstract |
[EN] Genebanks were created by the middle of the twentieth century to preserve cultivated biodiversity when landraces began to be substituted by modern varieties. This move was generally accepted as a necessary step to safeguard the future. After about 75 years of collecting and maintaining genetic resources, the increasing ability of biotechnology to create new variability brings the roles of genebanks in the present and near future into question. As a continuation of several workshops that started in 2014, staff of some representative genebanks have met to discuss how the Spanish Plant Genetic Resources Network can be improved, identifying the following major shortcomings: lack of efficient coordination in the distribution of species among genebanks; too many genebanks; existence of detected and undetected duplicates; insufficient rate of regeneration; insufficient phenotyping, genotyping, and epiphenotyping; unsatisfactory rate of use by end users; and, insufficient funding. As a considerable increase in public funding is unlikely, we propose some strategies to increase the efficiency of the system. The most urgent tasks are to strengthen the rationalization of the network by establishing a clear hierarchy and functions, to improve the information in the base collection by deep characterization including not only phenotypes but also uses and utilities, to progressively replace the active collections with focused core collections constructed to meet users' needs, to optimize regeneration protocols, to limit new collecting expeditions of Spanish crop wild relatives to those growing in threatened habitats, and to develop user-friendly platforms to access germplasm documentation, including a unified system of descriptors and classification categories. Current advances in biotechnology, and especially those in gene editing will have without doubt an impact on the role of genebanks. However, the high number of genes and gene combinations created by evolution they hold cannot be produced by these techniques at present. So, these reservoirs of variability will continue to be indispensable for the near-medium future while the function of all the genes is unveiled. In turn, biotechnologies and gene editing will allow us to take advantage of the information held in genebanks in a more efficient and fast way, contributing to a better rationalization and functioning. |
es_ES |
dc.description.sponsorship |
This work was partially funded Ministerio de Economia y Competitividad and FEDER through projects RFP2015-00008-C4 and RFP2015-00016-00-00. |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
Frontiers Media SA |
es_ES |
dc.relation.ispartof |
Frontiers in Plant Science |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Genetic variability |
es_ES |
dc.subject |
Phenotypic variation |
es_ES |
dc.subject |
Ex situ conservation |
es_ES |
dc.subject |
Landraces |
es_ES |
dc.subject |
Crop wild relatives |
es_ES |
dc.subject |
Seedbanks |
es_ES |
dc.subject |
Gene conservation |
es_ES |
dc.subject |
Plant genetic resources |
es_ES |
dc.subject.classification |
GENETICA |
es_ES |
dc.title |
Plant genebanks: present situation and proposals for their improvement. The case of the Spanish Network |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.3389/fpls.2018.01794 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MINECO//RFP2015-00008-C4/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MINECO//RFP2015-00016-00-00/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MINECO//RFP2015-00016-00-00/ES/Desarrollo de herramientas bioinformáticas para la racionalización de colecciones de germoplasma: aplicación a las colecciones de tomate de los bancos españoles/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana |
es_ES |
dc.description.bibliographicCitation |
Díez Niclós, MJTDJ.; De La Rosa, L.; Martín, I.; Guasch, L.; Cartea, ME.; Mallor, C.; Casals, J.... (2018). Plant genebanks: present situation and proposals for their improvement. The case of the Spanish Network. Frontiers in Plant Science. 9. https://doi.org/10.3389/fpls.2018.01794 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.3389/fpls.2018.01794 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
9 |
es_ES |
dc.identifier.eissn |
1664-462X |
es_ES |
dc.identifier.pmid |
30564263 |
es_ES |
dc.identifier.pmcid |
PMC6288731 |
es_ES |
dc.relation.pasarela |
S\380903 |
es_ES |
dc.contributor.funder |
European Regional Development Fund |
es_ES |
dc.contributor.funder |
Ministerio de Economía y Competitividad |
es_ES |
dc.description.references |
Ahmed, S., Stepp, J. R., Orians, C., Griffin, T., Matyas, C., Robbat, A., … Kennelly, E. (2014). Effects of Extreme Climate Events on Tea (Camellia sinensis) Functional Quality Validate Indigenous Farmer Knowledge and Sensory Preferences in Tropical China. PLoS ONE, 9(10), e109126. doi:10.1371/journal.pone.0109126 |
es_ES |
dc.description.references |
Byrne, P. F., Volk, G. M., Gardner, C., Gore, M. A., Simon, P. W., & Smith, S. (2018). Sustaining the Future of Plant Breeding: The Critical Role of the USDA‐ARS National Plant Germplasm System. Crop Science, 58(2), 451-468. doi:10.2135/cropsci2017.05.0303 |
es_ES |
dc.description.references |
Villa, T. C. C., Maxted, N., Scholten, M., & Ford-Lloyd, B. (2005). Defining and identifying crop landraces. Plant Genetic Resources, 3(3), 373-384. doi:10.1079/pgr200591 |
es_ES |
dc.description.references |
Cartea, M. E., Picoaga, A., Soengas, P., & Ordás, A. (2003). Euphytica, 129(1), 25-32. doi:10.1023/a:1021576005211 |
es_ES |
dc.description.references |
Casals, J., Casañas, F., & Simó, J. (2017). Is It Still Necessary to Continue to Collect Crop Genetic Resources in the Mediterranean Area? A Case Study in Catalonia. Economic Botany, 71(4), 330-341. doi:10.1007/s12231-017-9392-0 |
es_ES |
dc.description.references |
Casañas, F., Simó, J., Casals, J., & Prohens, J. (2017). Toward an Evolved Concept of Landrace. Frontiers in Plant Science, 08. doi:10.3389/fpls.2017.00145 |
es_ES |
dc.description.references |
Cebolla-Cornejo, J., Roselló, S., & Nuez, F. (2013). Phenotypic and genetic diversity of Spanish tomato landraces. Scientia Horticulturae, 162, 150-164. doi:10.1016/j.scienta.2013.07.044 |
es_ES |
dc.description.references |
Ceccarelli, S., & Grando, S. (1996). Drought as a challenge for the plant breeder. Plant Growth Regulation, 20(2), 149-155. doi:10.1007/bf00024011 |
es_ES |
dc.description.references |
Chapman, S. C., Chakraborty, S., Dreccer, M. F., & Howden, S. M. (2012). Plant adaptation to climate change—opportunities and priorities in breeding. Crop and Pasture Science, 63(3), 251. doi:10.1071/cp11303 |
es_ES |
dc.description.references |
Clawson, D. L. (1985). Harvest Security and Intraspecific Diversity in Traditional Tropical Agriculture. Economic Botany, 39(1), 56-67. doi:10.1007/bf02861175 |
es_ES |
dc.description.references |
Li, D.-Z., & Pritchard, H. W. (2009). The science and economics of ex situ plant conservation. Trends in Plant Science, 14(11), 614-621. doi:10.1016/j.tplants.2009.09.005 |
es_ES |
dc.description.references |
Gepts, P. (2006). Plant Genetic Resources Conservation and Utilization: The Accomplishments and Future of a Societal Insurance Policy. Crop Science, 46(5), 2278-2292. doi:10.2135/cropsci2006.03.0169gas |
es_ES |
dc.description.references |
Gómez, O. J., Blair, M. W., Frankow-Lindberg, B. E., & Gullberg, U. (2005). Comparative Study of Common Bean ( Phaseolus vulgarisL.) Landraces Conserved ex situ in Genebanks and in situ by Farmers. Genetic Resources and Crop Evolution, 52(4), 371-380. doi:10.1007/s10722-005-2249-x |
es_ES |
dc.description.references |
Hajjar, R., & Hodgkin, T. (2007). The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica, 156(1-2), 1-13. doi:10.1007/s10681-007-9363-0 |
es_ES |
dc.description.references |
Halewood, M., Chiurugwi, T., Sackville Hamilton, R., Kurtz, B., Marden, E., Welch, E., … Powell, W. (2018). Plant genetic resources for food and agriculture: opportunities and challenges emerging from the science and information technology revolution. New Phytologist, 217(4), 1407-1419. doi:10.1111/nph.14993 |
es_ES |
dc.description.references |
Jarvis, D. I., Hodgkin, T., Sthapit, B. R., Fadda, C., & Lopez-Noriega, I. (2011). An Heuristic Framework for Identifying Multiple Ways of Supporting the Conservation and Use of Traditional Crop Varieties within the Agricultural Production System. Critical Reviews in Plant Sciences, 30(1-2), 125-176. doi:10.1080/07352689.2011.554358 |
es_ES |
dc.description.references |
Khoury, C. K., Achicanoy, H. A., Bjorkman, A. D., Navarro-Racines, C., Guarino, L., Flores-Palacios, X., … Struik, P. C. (2016). Origins of food crops connect countries worldwide. Proceedings of the Royal Society B: Biological Sciences, 283(1832), 20160792. doi:10.1098/rspb.2016.0792 |
es_ES |
dc.description.references |
Khoury, C. K., Bjorkman, A. D., Dempewolf, H., Ramirez-Villegas, J., Guarino, L., Jarvis, A., … Struik, P. C. (2014). Increasing homogeneity in global food supplies and the implications for food security. Proceedings of the National Academy of Sciences, 111(11), 4001-4006. doi:10.1073/pnas.1313490111 |
es_ES |
dc.description.references |
Maxted, N., Scholten, M., Codd, R., & Ford-Lloyd, B. (2007). Creation and use of a national inventory of crop wild relatives. Biological Conservation, 140(1-2), 142-159. doi:10.1016/j.biocon.2007.08.006 |
es_ES |
dc.description.references |
McCouch, S., Baute, G. J., Bradeen, J., Bramel, P., Bretting, P. K., Buckler, E., … Zamir, D. (2013). Feeding the future. Nature, 499(7456), 23-24. doi:10.1038/499023a |
es_ES |
dc.description.references |
McCouch, S. R., McNally, K. L., Wang, W., & Sackville Hamilton, R. (2012). Genomics of gene banks: A case study in rice. American Journal of Botany, 99(2), 407-423. doi:10.3732/ajb.1100385 |
es_ES |
dc.description.references |
McFerson, J. R., Lamboy, W. F., & Kresovich, S. (1996). Assessing User Perceptions of Genetic Resource Collections in Crucifer Crops. Crop Science, 36(4), 831-838. doi:10.2135/cropsci1996.0011183x003600040001x |
es_ES |
dc.description.references |
Meyer, R. S. (2015). Encouraging metadata curation in the Diversity Seek initiative. Nature Plants, 1(7). doi:10.1038/nplants.2015.99 |
es_ES |
dc.description.references |
Negri, V., & Tiranti, B. (2010). Effectiveness of in situ and ex situ conservation of crop diversity. What a Phaseolus vulgaris L. landrace case study can tell us. Genetica, 138(9-10), 985-998. doi:10.1007/s10709-010-9485-5 |
es_ES |
dc.description.references |
Olesen, J. E., & Bindi, M. (2002). Consequences of climate change for European agricultural productivity, land use and policy. European Journal of Agronomy, 16(4), 239-262. doi:10.1016/s1161-0301(02)00004-7 |
es_ES |
dc.description.references |
Prada, D. (2009). Molecular population genetics and agronomic alleles in seed banks: searching for a needle in a haystack? Journal of Experimental Botany, 60(9), 2541-2552. doi:10.1093/jxb/erp130 |
es_ES |
dc.description.references |
Reif, J. C., Melchinger, A. E., & Frisch, M. (2005). Genetical and Mathematical Properties of Similarity and Dissimilarity Coefficients Applied in Plant Breeding and Seed Bank Management. Crop Science, 45(1), cropsci2005.0001. doi:10.2135/cropsci2005.0001 |
es_ES |
dc.description.references |
Rubio Teso, M. L., Torres Lamas, E., Parra-Quijano, M., de la Rosa, L., Fajardo, J., & Iriondo, J. M. (2018). National inventory and prioritization of crop wild relatives in Spain. Genetic Resources and Crop Evolution, 65(4), 1237-1253. doi:10.1007/s10722-018-0610-0 |
es_ES |
dc.description.references |
Santalla, M., Rodiño, A., & De Ron, A. (2002). Allozyme evidence supporting southwestern Europe as a secondary center of genetic diversity for the common bean. Theoretical and Applied Genetics, 104(6), 934-944. doi:10.1007/s00122-001-0844-6 |
es_ES |
dc.description.references |
Schreinemachers, P., Ebert, A. W., & Wu, M.-H. (2014). Costing the ex situ conservation of plant genetic resources at AVRDC – The World Vegetable Center. Genetic Resources and Crop Evolution, 61(4), 757-773. doi:10.1007/s10722-013-0070-5 |
es_ES |
dc.description.references |
Soengas, P., Cartea, M. E., Velasco, P., Padilla, G., & Ordás, A. (2008). Morphologic and Agronomic Diversity of Brassica napus Crops. Journal of the American Society for Horticultural Science, 133(1), 48-54. doi:10.21273/jashs.133.1.48 |
es_ES |
dc.description.references |
Tanksley, S. D., & McCouch, S. R. (1997). Seed Banks and Molecular Maps: Unlocking Genetic Potential from the Wild. Science, 277(5329), 1063-1066. doi:10.1126/science.277.5329.1063 |
es_ES |
dc.description.references |
Van de Wouw, M., Kik, C., van Hintum, T., van Treuren, R., & Visser, B. (2009). Genetic erosion in crops: concept, research results and challenges. Plant Genetic Resources, 8(1), 1-15. doi:10.1017/s1479262109990062 |
es_ES |
dc.description.references |
Van Treuren, R., & van Hintum, T. J. L. (2014). Next-generation genebanking: plant genetic resources management and utilization in the sequencing era. Plant Genetic Resources, 12(3), 298-307. doi:10.1017/s1479262114000082 |
es_ES |
dc.description.references |
Wambugu, P. W., Ndjiondjop, M.-N., & Henry, R. J. (2018). Role of genomics in promoting the utilization of plant genetic resources in genebanks. Briefings in Functional Genomics, 17(3), 198-206. doi:10.1093/bfgp/ely014 |
es_ES |
dc.description.references |
Zamir, D. (2013). Where Have All the Crop Phenotypes Gone? PLoS Biology, 11(6), e1001595. doi:10.1371/journal.pbio.1001595 |
es_ES |
dc.description.references |
Zeven, A. C. (1998). Euphytica, 104(2), 127-139. doi:10.1023/a:1018683119237 |
es_ES |