- -

Plant genebanks: present situation and proposals for their improvement. The case of the Spanish Network

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Plant genebanks: present situation and proposals for their improvement. The case of the Spanish Network

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Díez Niclós, Mª José Teresa De Jesús es_ES
dc.contributor.author de la Rosa, L. es_ES
dc.contributor.author Martín, Isaura es_ES
dc.contributor.author Guasch, Luis es_ES
dc.contributor.author Cartea, María Elena es_ES
dc.contributor.author Mallor, Cristina es_ES
dc.contributor.author Casals, Joan es_ES
dc.contributor.author Simo, Joan es_ES
dc.contributor.author Rivera, Ana es_ES
dc.contributor.author Anastasio, German es_ES
dc.contributor.author Prohens Tomás, Jaime es_ES
dc.contributor.author Soler Aleixandre, Salvador es_ES
dc.contributor.author Blanca Postigo, José Miguel es_ES
dc.contributor.author Valcarcel Germes, José Vicente es_ES
dc.contributor.author Casañas Artigas, Francesc es_ES
dc.date.accessioned 2020-06-13T03:33:14Z
dc.date.available 2020-06-13T03:33:14Z
dc.date.issued 2018-12-04 es_ES
dc.identifier.uri http://hdl.handle.net/10251/146297
dc.description.abstract [EN] Genebanks were created by the middle of the twentieth century to preserve cultivated biodiversity when landraces began to be substituted by modern varieties. This move was generally accepted as a necessary step to safeguard the future. After about 75 years of collecting and maintaining genetic resources, the increasing ability of biotechnology to create new variability brings the roles of genebanks in the present and near future into question. As a continuation of several workshops that started in 2014, staff of some representative genebanks have met to discuss how the Spanish Plant Genetic Resources Network can be improved, identifying the following major shortcomings: lack of efficient coordination in the distribution of species among genebanks; too many genebanks; existence of detected and undetected duplicates; insufficient rate of regeneration; insufficient phenotyping, genotyping, and epiphenotyping; unsatisfactory rate of use by end users; and, insufficient funding. As a considerable increase in public funding is unlikely, we propose some strategies to increase the efficiency of the system. The most urgent tasks are to strengthen the rationalization of the network by establishing a clear hierarchy and functions, to improve the information in the base collection by deep characterization including not only phenotypes but also uses and utilities, to progressively replace the active collections with focused core collections constructed to meet users' needs, to optimize regeneration protocols, to limit new collecting expeditions of Spanish crop wild relatives to those growing in threatened habitats, and to develop user-friendly platforms to access germplasm documentation, including a unified system of descriptors and classification categories. Current advances in biotechnology, and especially those in gene editing will have without doubt an impact on the role of genebanks. However, the high number of genes and gene combinations created by evolution they hold cannot be produced by these techniques at present. So, these reservoirs of variability will continue to be indispensable for the near-medium future while the function of all the genes is unveiled. In turn, biotechnologies and gene editing will allow us to take advantage of the information held in genebanks in a more efficient and fast way, contributing to a better rationalization and functioning. es_ES
dc.description.sponsorship This work was partially funded Ministerio de Economia y Competitividad and FEDER through projects RFP2015-00008-C4 and RFP2015-00016-00-00. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Plant Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Genetic variability es_ES
dc.subject Phenotypic variation es_ES
dc.subject Ex situ conservation es_ES
dc.subject Landraces es_ES
dc.subject Crop wild relatives es_ES
dc.subject Seedbanks es_ES
dc.subject Gene conservation es_ES
dc.subject Plant genetic resources es_ES
dc.subject.classification GENETICA es_ES
dc.title Plant genebanks: present situation and proposals for their improvement. The case of the Spanish Network es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fpls.2018.01794 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RFP2015-00008-C4/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RFP2015-00016-00-00/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RFP2015-00016-00-00/ES/Desarrollo de herramientas bioinformáticas para la racionalización de colecciones de germoplasma: aplicación a las colecciones de tomate de los bancos españoles/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.description.bibliographicCitation Díez Niclós, MJTDJ.; De La Rosa, L.; Martín, I.; Guasch, L.; Cartea, ME.; Mallor, C.; Casals, J.... (2018). Plant genebanks: present situation and proposals for their improvement. The case of the Spanish Network. Frontiers in Plant Science. 9. https://doi.org/10.3389/fpls.2018.01794 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fpls.2018.01794 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.identifier.eissn 1664-462X es_ES
dc.identifier.pmid 30564263 es_ES
dc.identifier.pmcid PMC6288731 es_ES
dc.relation.pasarela S\380903 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Ahmed, S., Stepp, J. R., Orians, C., Griffin, T., Matyas, C., Robbat, A., … Kennelly, E. (2014). Effects of Extreme Climate Events on Tea (Camellia sinensis) Functional Quality Validate Indigenous Farmer Knowledge and Sensory Preferences in Tropical China. PLoS ONE, 9(10), e109126. doi:10.1371/journal.pone.0109126 es_ES
dc.description.references Byrne, P. F., Volk, G. M., Gardner, C., Gore, M. A., Simon, P. W., & Smith, S. (2018). Sustaining the Future of Plant Breeding: The Critical Role of the USDA‐ARS National Plant Germplasm System. Crop Science, 58(2), 451-468. doi:10.2135/cropsci2017.05.0303 es_ES
dc.description.references Villa, T. C. C., Maxted, N., Scholten, M., & Ford-Lloyd, B. (2005). Defining and identifying crop landraces. Plant Genetic Resources, 3(3), 373-384. doi:10.1079/pgr200591 es_ES
dc.description.references Cartea, M. E., Picoaga, A., Soengas, P., & Ordás, A. (2003). Euphytica, 129(1), 25-32. doi:10.1023/a:1021576005211 es_ES
dc.description.references Casals, J., Casañas, F., & Simó, J. (2017). Is It Still Necessary to Continue to Collect Crop Genetic Resources in the Mediterranean Area? A Case Study in Catalonia. Economic Botany, 71(4), 330-341. doi:10.1007/s12231-017-9392-0 es_ES
dc.description.references Casañas, F., Simó, J., Casals, J., & Prohens, J. (2017). Toward an Evolved Concept of Landrace. Frontiers in Plant Science, 08. doi:10.3389/fpls.2017.00145 es_ES
dc.description.references Cebolla-Cornejo, J., Roselló, S., & Nuez, F. (2013). Phenotypic and genetic diversity of Spanish tomato landraces. Scientia Horticulturae, 162, 150-164. doi:10.1016/j.scienta.2013.07.044 es_ES
dc.description.references Ceccarelli, S., & Grando, S. (1996). Drought as a challenge for the plant breeder. Plant Growth Regulation, 20(2), 149-155. doi:10.1007/bf00024011 es_ES
dc.description.references Chapman, S. C., Chakraborty, S., Dreccer, M. F., & Howden, S. M. (2012). Plant adaptation to climate change—opportunities and priorities in breeding. Crop and Pasture Science, 63(3), 251. doi:10.1071/cp11303 es_ES
dc.description.references Clawson, D. L. (1985). Harvest Security and Intraspecific Diversity in Traditional Tropical Agriculture. Economic Botany, 39(1), 56-67. doi:10.1007/bf02861175 es_ES
dc.description.references Li, D.-Z., & Pritchard, H. W. (2009). The science and economics of ex situ plant conservation. Trends in Plant Science, 14(11), 614-621. doi:10.1016/j.tplants.2009.09.005 es_ES
dc.description.references Gepts, P. (2006). Plant Genetic Resources Conservation and Utilization: The Accomplishments and Future of a Societal Insurance Policy. Crop Science, 46(5), 2278-2292. doi:10.2135/cropsci2006.03.0169gas es_ES
dc.description.references Gómez, O. J., Blair, M. W., Frankow-Lindberg, B. E., & Gullberg, U. (2005). Comparative Study of Common Bean ( Phaseolus vulgarisL.) Landraces Conserved ex situ in Genebanks and in situ by Farmers. Genetic Resources and Crop Evolution, 52(4), 371-380. doi:10.1007/s10722-005-2249-x es_ES
dc.description.references Hajjar, R., & Hodgkin, T. (2007). The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica, 156(1-2), 1-13. doi:10.1007/s10681-007-9363-0 es_ES
dc.description.references Halewood, M., Chiurugwi, T., Sackville Hamilton, R., Kurtz, B., Marden, E., Welch, E., … Powell, W. (2018). Plant genetic resources for food and agriculture: opportunities and challenges emerging from the science and information technology revolution. New Phytologist, 217(4), 1407-1419. doi:10.1111/nph.14993 es_ES
dc.description.references Jarvis, D. I., Hodgkin, T., Sthapit, B. R., Fadda, C., & Lopez-Noriega, I. (2011). An Heuristic Framework for Identifying Multiple Ways of Supporting the Conservation and Use of Traditional Crop Varieties within the Agricultural Production System. Critical Reviews in Plant Sciences, 30(1-2), 125-176. doi:10.1080/07352689.2011.554358 es_ES
dc.description.references Khoury, C. K., Achicanoy, H. A., Bjorkman, A. D., Navarro-Racines, C., Guarino, L., Flores-Palacios, X., … Struik, P. C. (2016). Origins of food crops connect countries worldwide. Proceedings of the Royal Society B: Biological Sciences, 283(1832), 20160792. doi:10.1098/rspb.2016.0792 es_ES
dc.description.references Khoury, C. K., Bjorkman, A. D., Dempewolf, H., Ramirez-Villegas, J., Guarino, L., Jarvis, A., … Struik, P. C. (2014). Increasing homogeneity in global food supplies and the implications for food security. Proceedings of the National Academy of Sciences, 111(11), 4001-4006. doi:10.1073/pnas.1313490111 es_ES
dc.description.references Maxted, N., Scholten, M., Codd, R., & Ford-Lloyd, B. (2007). Creation and use of a national inventory of crop wild relatives. Biological Conservation, 140(1-2), 142-159. doi:10.1016/j.biocon.2007.08.006 es_ES
dc.description.references McCouch, S., Baute, G. J., Bradeen, J., Bramel, P., Bretting, P. K., Buckler, E., … Zamir, D. (2013). Feeding the future. Nature, 499(7456), 23-24. doi:10.1038/499023a es_ES
dc.description.references McCouch, S. R., McNally, K. L., Wang, W., & Sackville Hamilton, R. (2012). Genomics of gene banks: A case study in rice. American Journal of Botany, 99(2), 407-423. doi:10.3732/ajb.1100385 es_ES
dc.description.references McFerson, J. R., Lamboy, W. F., & Kresovich, S. (1996). Assessing User Perceptions of Genetic Resource Collections in Crucifer Crops. Crop Science, 36(4), 831-838. doi:10.2135/cropsci1996.0011183x003600040001x es_ES
dc.description.references Meyer, R. S. (2015). Encouraging metadata curation in the Diversity Seek initiative. Nature Plants, 1(7). doi:10.1038/nplants.2015.99 es_ES
dc.description.references Negri, V., & Tiranti, B. (2010). Effectiveness of in situ and ex situ conservation of crop diversity. What a Phaseolus vulgaris L. landrace case study can tell us. Genetica, 138(9-10), 985-998. doi:10.1007/s10709-010-9485-5 es_ES
dc.description.references Olesen, J. E., & Bindi, M. (2002). Consequences of climate change for European agricultural productivity, land use and policy. European Journal of Agronomy, 16(4), 239-262. doi:10.1016/s1161-0301(02)00004-7 es_ES
dc.description.references Prada, D. (2009). Molecular population genetics and agronomic alleles in seed banks: searching for a needle in a haystack? Journal of Experimental Botany, 60(9), 2541-2552. doi:10.1093/jxb/erp130 es_ES
dc.description.references Reif, J. C., Melchinger, A. E., & Frisch, M. (2005). Genetical and Mathematical Properties of Similarity and Dissimilarity Coefficients Applied in Plant Breeding and Seed Bank Management. Crop Science, 45(1), cropsci2005.0001. doi:10.2135/cropsci2005.0001 es_ES
dc.description.references Rubio Teso, M. L., Torres Lamas, E., Parra-Quijano, M., de la Rosa, L., Fajardo, J., & Iriondo, J. M. (2018). National inventory and prioritization of crop wild relatives in Spain. Genetic Resources and Crop Evolution, 65(4), 1237-1253. doi:10.1007/s10722-018-0610-0 es_ES
dc.description.references Santalla, M., Rodiño, A., & De Ron, A. (2002). Allozyme evidence supporting southwestern Europe as a secondary center of genetic diversity for the common bean. Theoretical and Applied Genetics, 104(6), 934-944. doi:10.1007/s00122-001-0844-6 es_ES
dc.description.references Schreinemachers, P., Ebert, A. W., & Wu, M.-H. (2014). Costing the ex situ conservation of plant genetic resources at AVRDC – The World Vegetable Center. Genetic Resources and Crop Evolution, 61(4), 757-773. doi:10.1007/s10722-013-0070-5 es_ES
dc.description.references Soengas, P., Cartea, M. E., Velasco, P., Padilla, G., & Ordás, A. (2008). Morphologic and Agronomic Diversity of Brassica napus Crops. Journal of the American Society for Horticultural Science, 133(1), 48-54. doi:10.21273/jashs.133.1.48 es_ES
dc.description.references Tanksley, S. D., & McCouch, S. R. (1997). Seed Banks and Molecular Maps: Unlocking Genetic Potential from the Wild. Science, 277(5329), 1063-1066. doi:10.1126/science.277.5329.1063 es_ES
dc.description.references Van de Wouw, M., Kik, C., van Hintum, T., van Treuren, R., & Visser, B. (2009). Genetic erosion in crops: concept, research results and challenges. Plant Genetic Resources, 8(1), 1-15. doi:10.1017/s1479262109990062 es_ES
dc.description.references Van Treuren, R., & van Hintum, T. J. L. (2014). Next-generation genebanking: plant genetic resources management and utilization in the sequencing era. Plant Genetic Resources, 12(3), 298-307. doi:10.1017/s1479262114000082 es_ES
dc.description.references Wambugu, P. W., Ndjiondjop, M.-N., & Henry, R. J. (2018). Role of genomics in promoting the utilization of plant genetic resources in genebanks. Briefings in Functional Genomics, 17(3), 198-206. doi:10.1093/bfgp/ely014 es_ES
dc.description.references Zamir, D. (2013). Where Have All the Crop Phenotypes Gone? PLoS Biology, 11(6), e1001595. doi:10.1371/journal.pbio.1001595 es_ES
dc.description.references Zeven, A. C. (1998). Euphytica, 104(2), 127-139. doi:10.1023/a:1018683119237 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem