Mostrar el registro sencillo del ítem
dc.contributor.author | Gregori Gregori, Valentín | es_ES |
dc.contributor.author | Miñana, Juan-José | es_ES |
dc.contributor.author | Roig, Bernardino | es_ES |
dc.contributor.author | Sapena Piera, Almanzor | es_ES |
dc.date.accessioned | 2020-06-13T03:33:30Z | |
dc.date.available | 2020-06-13T03:33:30Z | |
dc.date.issued | 2018-12 | es_ES |
dc.identifier.issn | 1422-6383 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/146307 | |
dc.description.abstract | [EN] Complete ultrametric spaces constitute a particular class of the so called, recently, G-complete metric spaces. In this paper we characterize a more general class called weak G-complete metric spaces, by means of nested sequences of closed sets. Then, we also state a general fixed point theorem for a self-mapping of a weak G-complete metric space. As a corollary, every asymptotically regular self-mapping of a weak G-Complete metric space has a fixed point. | es_ES |
dc.description.sponsorship | V. Gregori acknowledges the support of the Ministry of Economy and Competitiveness of Spain under Grant MTM2015-64373-P (MINECO/Feder, UE). J.J. Minana acknowledges financial support from the Spanish Ministry of Economy and Competitiveness under Grants TIN2016-81731-REDT (LODISCO II) and AEI/FEDER, UE funds, by Programa Operatiu FEDER 2014-2020 de les Illes Balears, by Project Ref. PROCOE/4/2017 (Direccio General d'Innovacio i Recerca, Govern de les Illes Balears), and by project ROBINS. The latter has received research funding from the EU H2020 framework under GA 779776. This publication reflects only the authors views and the European Union is not liable for any use that may be made of the information contained therein. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Results in Mathematics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Completeness | es_ES |
dc.subject | Fixed point theorem | es_ES |
dc.subject | (non-Archimedean metric)ultrametric | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | On completeness in metric spaces and fixed point theorems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00025-018-0896-4 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/779776/EU/Robotics Technology for Inspection of Ships/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2016-81731-REDT/ES/LOGICA DIFUSA Y SOFT COMPUTING/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CAIB//PROCOE%2F4%2F2017/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Gregori Gregori, V.; Miñana, J.; Roig, B.; Sapena Piera, A. (2018). On completeness in metric spaces and fixed point theorems. Results in Mathematics. 73(4):1-13. https://doi.org/10.1007/s00025-018-0896-4 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s00025-018-0896-4 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 73 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\385199 | es_ES |
dc.contributor.funder | Govern Illes Balears | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Bourbaki, N.: Topologie Générale II. Herman, Paris (1974) | es_ES |
dc.description.references | Boyd, D.W., Wong, J.S.W.: On nonlinear contractions. Proc. Am. Math. Soc. 20, 458–469 (1969) | es_ES |
dc.description.references | Browder, F.E., Petryshyn, W.V.: The solution by iteration of nonlinear functional equations in Banach spaces. Bull. Am. Math. Soc. 72, 571–575 (1966) | es_ES |
dc.description.references | Edelstein, M.: On fixed and periodic points under contractive mappings. J. Lond. Math. Soc. 37, 74–79 (1962) | es_ES |
dc.description.references | Fang, J.X.: On fixed point theorems in fuzzy metric spaces. Fuzzy Sets Syst. 46(1), 107–113 (1992) | es_ES |
dc.description.references | Grabiec, M.: Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 27, 385–389 (1989) | es_ES |
dc.description.references | Gregori, V., Sapena, A.: On fixed point theorems in fuzzy metric spaces. Fuzzy Sets Syst. 125, 245–252 (2002) | es_ES |
dc.description.references | Gregori, V., Miñana, J.-J., Morillas, S., Sapena, A.: Cauchyness and convergence in fuzzy metric spaces. RACSAM 111(1), 25–37 (2017) | es_ES |
dc.description.references | Gregori, V., Miñana, J-J., Sapena, A.: On Banach contraction principles in fuzzy metric spaces. Fixed Point Theory (to appear) | es_ES |
dc.description.references | Kelley, J.: General Topology. Van Nostrand, Princeton (1955) | es_ES |
dc.description.references | Matkowski, J.: Integrable solutions of functional equations. Dissertationes Mathematicae (Rozprawy Matematyczne) 127, 1–63 (1975) | es_ES |
dc.description.references | Mihet, D.: A Banach contraction theorem in fuzzy metric spaces. Fuzzy Sets Syst. 144, 8431–439 (2004) | es_ES |
dc.description.references | Steen, L.A., Seebach, J.A.: Counterexamples in Topology, 2nd edn. Springer, Berlin (1978) | es_ES |
dc.description.references | Tirado, P.: On compactness and G-completeness in fuzzy metric spaces. Iran. J. Fuzzy Syst. 9(4), 151–158 (2012) | es_ES |
dc.description.references | Tirado, P.: Contraction mappings in fuzzy quasimetric spaces and $$[0,1]$$ [ 0 , 1 ] -fuzzy posets. Fixed Point Theory 13(1), 273–283 (2012) | es_ES |
dc.description.references | Vasuki, R., Veeramani, P.: Fixed points theorems and Cauchy sequences in fuzzy metric spaces. Fuzzy Sets Syst. 135(3), 415–417 (2003) | es_ES |