- -

On completeness in metric spaces and fixed point theorems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On completeness in metric spaces and fixed point theorems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gregori Gregori, Valentín es_ES
dc.contributor.author Miñana, Juan-José es_ES
dc.contributor.author Roig, Bernardino es_ES
dc.contributor.author Sapena Piera, Almanzor es_ES
dc.date.accessioned 2020-06-13T03:33:30Z
dc.date.available 2020-06-13T03:33:30Z
dc.date.issued 2018-12 es_ES
dc.identifier.issn 1422-6383 es_ES
dc.identifier.uri http://hdl.handle.net/10251/146307
dc.description.abstract [EN] Complete ultrametric spaces constitute a particular class of the so called, recently, G-complete metric spaces. In this paper we characterize a more general class called weak G-complete metric spaces, by means of nested sequences of closed sets. Then, we also state a general fixed point theorem for a self-mapping of a weak G-complete metric space. As a corollary, every asymptotically regular self-mapping of a weak G-Complete metric space has a fixed point. es_ES
dc.description.sponsorship V. Gregori acknowledges the support of the Ministry of Economy and Competitiveness of Spain under Grant MTM2015-64373-P (MINECO/Feder, UE). J.J. Minana acknowledges financial support from the Spanish Ministry of Economy and Competitiveness under Grants TIN2016-81731-REDT (LODISCO II) and AEI/FEDER, UE funds, by Programa Operatiu FEDER 2014-2020 de les Illes Balears, by Project Ref. PROCOE/4/2017 (Direccio General d'Innovacio i Recerca, Govern de les Illes Balears), and by project ROBINS. The latter has received research funding from the EU H2020 framework under GA 779776. This publication reflects only the authors views and the European Union is not liable for any use that may be made of the information contained therein. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Results in Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Completeness es_ES
dc.subject Fixed point theorem es_ES
dc.subject (non-Archimedean metric)ultrametric es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title On completeness in metric spaces and fixed point theorems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00025-018-0896-4 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/779776/EU/Robotics Technology for Inspection of Ships/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2016-81731-REDT/ES/LOGICA DIFUSA Y SOFT COMPUTING/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAIB//PROCOE%2F4%2F2017/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Gregori Gregori, V.; Miñana, J.; Roig, B.; Sapena Piera, A. (2018). On completeness in metric spaces and fixed point theorems. Results in Mathematics. 73(4):1-13. https://doi.org/10.1007/s00025-018-0896-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00025-018-0896-4 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 73 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\385199 es_ES
dc.contributor.funder Govern Illes Balears es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Bourbaki, N.: Topologie Générale II. Herman, Paris (1974) es_ES
dc.description.references Boyd, D.W., Wong, J.S.W.: On nonlinear contractions. Proc. Am. Math. Soc. 20, 458–469 (1969) es_ES
dc.description.references Browder, F.E., Petryshyn, W.V.: The solution by iteration of nonlinear functional equations in Banach spaces. Bull. Am. Math. Soc. 72, 571–575 (1966) es_ES
dc.description.references Edelstein, M.: On fixed and periodic points under contractive mappings. J. Lond. Math. Soc. 37, 74–79 (1962) es_ES
dc.description.references Fang, J.X.: On fixed point theorems in fuzzy metric spaces. Fuzzy Sets Syst. 46(1), 107–113 (1992) es_ES
dc.description.references Grabiec, M.: Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 27, 385–389 (1989) es_ES
dc.description.references Gregori, V., Sapena, A.: On fixed point theorems in fuzzy metric spaces. Fuzzy Sets Syst. 125, 245–252 (2002) es_ES
dc.description.references Gregori, V., Miñana, J.-J., Morillas, S., Sapena, A.: Cauchyness and convergence in fuzzy metric spaces. RACSAM 111(1), 25–37 (2017) es_ES
dc.description.references Gregori, V., Miñana, J-J., Sapena, A.: On Banach contraction principles in fuzzy metric spaces. Fixed Point Theory (to appear) es_ES
dc.description.references Kelley, J.: General Topology. Van Nostrand, Princeton (1955) es_ES
dc.description.references Matkowski, J.: Integrable solutions of functional equations. Dissertationes Mathematicae (Rozprawy Matematyczne) 127, 1–63 (1975) es_ES
dc.description.references Mihet, D.: A Banach contraction theorem in fuzzy metric spaces. Fuzzy Sets Syst. 144, 8431–439 (2004) es_ES
dc.description.references Steen, L.A., Seebach, J.A.: Counterexamples in Topology, 2nd edn. Springer, Berlin (1978) es_ES
dc.description.references Tirado, P.: On compactness and G-completeness in fuzzy metric spaces. Iran. J. Fuzzy Syst. 9(4), 151–158 (2012) es_ES
dc.description.references Tirado, P.: Contraction mappings in fuzzy quasimetric spaces and $$[0,1]$$ [ 0 , 1 ] -fuzzy posets. Fixed Point Theory 13(1), 273–283 (2012) es_ES
dc.description.references Vasuki, R., Veeramani, P.: Fixed points theorems and Cauchy sequences in fuzzy metric spaces. Fuzzy Sets Syst. 135(3), 415–417 (2003) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem