Mostrar el registro sencillo del ítem
dc.contributor.author | Blanco-Pons, Silvia | es_ES |
dc.contributor.author | Carrión-Ruiz, Berta | es_ES |
dc.contributor.author | Duong, M. | es_ES |
dc.contributor.author | Chartrand, J. | es_ES |
dc.contributor.author | Fai, S. | es_ES |
dc.contributor.author | Lerma, José Luis | es_ES |
dc.date.accessioned | 2020-06-16T03:45:39Z | |
dc.date.available | 2020-06-16T03:45:39Z | |
dc.date.issued | 2019-08-07 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/146436 | |
dc.description.abstract | [EN] Augmented Reality (AR) applications have experienced extraordinary growth recently, evolving into a well-established method for the dissemination and communication of content related to cultural heritage¿including education. AR applications have been used in museums and gallery exhibitions and virtual reconstructions of historic interiors. However, the circumstances of an outdoor environment can be problematic. This paper presents a methodology to develop immersive AR applications based on the recognition of outdoor buildings. To demonstrate this methodology, a case study focused on the Parliament Buildings National Historic Site in Ottawa, Canada has been conducted. The site is currently undergoing a multiyear rehabilitation program that will make access to parts of this national monument inaccessible to the public. AR experiences, including simulated photo merging of historic and present content, are proposed as one tool that can enrich the Parliament Hill visit during the rehabilitation. Outdoor AR experiences are limited by factors, such as variable lighting (and shadows) conditions, caused by changes in the environment (objects height and orientation, obstructions, occlusions), the weather, and the time of day. This paper proposes a workflow to solve some of these issues from a multi-image tracking approach. | es_ES |
dc.description.sponsorship | This work has been developed under the framework of the New Paradigms/New Tools for Heritage Conservation in Canada, a project funded through the Social Sciences and Humanities Research Council of Canada (SSHRC). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sustainability | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | 3D modeling | es_ES |
dc.subject | Augmented reality | es_ES |
dc.subject | Cultural heritage | es_ES |
dc.subject | Multi-image tracking | es_ES |
dc.subject | Tracking outdoor | es_ES |
dc.subject.classification | INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA | es_ES |
dc.title | Augmented Reality Markerless Multi-Image Outdoor Tracking System for the Historical Buildings on Parliament Hill | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/su11164268 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria | es_ES |
dc.description.bibliographicCitation | Blanco-Pons, S.; Carrión-Ruiz, B.; Duong, M.; Chartrand, J.; Fai, S.; Lerma, JL. (2019). Augmented Reality Markerless Multi-Image Outdoor Tracking System for the Historical Buildings on Parliament Hill. Sustainability. 11(16):1-15. https://doi.org/10.3390/su11164268 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/su11164268 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 16 | es_ES |
dc.identifier.eissn | 2071-1050 | es_ES |
dc.relation.pasarela | S\401029 | es_ES |
dc.contributor.funder | Social Sciences and Humanities Research Council of Canada | es_ES |
dc.description.references | Bekele, M. K., Pierdicca, R., Frontoni, E., Malinverni, E. S., & Gain, J. (2018). A Survey of Augmented, Virtual, and Mixed Reality for Cultural Heritage. Journal on Computing and Cultural Heritage, 11(2), 1-36. doi:10.1145/3145534 | es_ES |
dc.description.references | Gimeno, J., Portalés, C., Coma, I., Fernández, M., & Martínez, B. (2017). Combining traditional and indirect augmented reality for indoor crowded environments. A case study on the Casa Batlló museum. Computers & Graphics, 69, 92-103. doi:10.1016/j.cag.2017.09.001 | es_ES |
dc.description.references | Kolivand, H., El Rhalibi, A., Shahrizal Sunar, M., & Saba, T. (2018). ReVitAge: Realistic virtual heritage taking shadows and sky illumination into account. Journal of Cultural Heritage, 32, 166-175. doi:10.1016/j.culher.2018.01.020 | es_ES |
dc.description.references | Amakawa, J., & Westin, J. (2017). New Philadelphia: using augmented reality to interpret slavery and reconstruction era historical sites. International Journal of Heritage Studies, 24(3), 315-331. doi:10.1080/13527258.2017.1378909 | es_ES |
dc.description.references | Kim, J.-B., & Park, C. (2011). Development of Mobile AR Tour Application for the National Palace Museum of Korea. Lecture Notes in Computer Science, 55-60. doi:10.1007/978-3-642-22021-0_7 | es_ES |
dc.description.references | Barrile, V., Fotia, A., Bilotta, G., & De Carlo, D. (2019). Integration of geomatics methodologies and creation of a cultural heritage app using augmented reality. Virtual Archaeology Review, 10(20), 40. doi:10.4995/var.2019.10361 | es_ES |
dc.description.references | Analysis of Tracking Accuracy for Single-Camera Square-Marker-Based Tracking. In Third Workshop on Virtual and Augmented Reality of the GI-Fachgruppe VR/AR, Koblenz, Germany, 2006http://campar.in.tum.de/Chair/PublicationDetail?pub=pentenrieder2006gi | es_ES |
dc.description.references | Cirulis, A., & Brigmanis, K. B. (2013). 3D Outdoor Augmented Reality for Architecture and Urban Planning. Procedia Computer Science, 25, 71-79. doi:10.1016/j.procs.2013.11.009 | es_ES |
dc.description.references | You, S., Neumann, U., & Azuma, R. (1999). Orientation tracking for outdoor augmented reality registration. IEEE Computer Graphics and Applications, 19(6), 36-42. doi:10.1109/38.799738 | es_ES |
dc.description.references | Wither, J., Tsai, Y.-T., & Azuma, R. (2011). Indirect augmented reality. Computers & Graphics, 35(4), 810-822. doi:10.1016/j.cag.2011.04.010 | es_ES |
dc.description.references | Radkowski, R., & Oliver, J. (2013). Natural Feature Tracking Augmented Reality for On-Site Assembly Assistance Systems. Lecture Notes in Computer Science, 281-290. doi:10.1007/978-3-642-39420-1_30 | es_ES |
dc.description.references | Rao, J., Qiao, Y., Ren, F., Wang, J., & Du, Q. (2017). A Mobile Outdoor Augmented Reality Method Combining Deep Learning Object Detection and Spatial Relationships for Geovisualization. Sensors, 17(9), 1951. doi:10.3390/s17091951 | es_ES |
dc.description.references | Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., & Stuetzle, W. (1993). Mesh optimization. Proceedings of the 20th annual conference on Computer graphics and interactive techniques - SIGGRAPH ’93. doi:10.1145/166117.166119 | es_ES |
dc.description.references | Rossignac, J., & Borrel, P. (1993). Multi-resolution 3D approximations for rendering complex scenes. Modeling in Computer Graphics, 455-465. doi:10.1007/978-3-642-78114-8_29 | es_ES |
dc.description.references | Gross, M. H., Staadt, O. G., & Gatti, R. (1996). Efficient triangular surface approximations using wavelets and quadtree data structures. IEEE Transactions on Visualization and Computer Graphics, 2(2), 130-143. doi:10.1109/2945.506225 | es_ES |
dc.description.references | Botsch, M., Pauly, M., Rossl, C., Bischoff, S., & Kobbelt, L. (2006). Geometric modeling based on triangle meshes. ACM SIGGRAPH 2006 Courses on - SIGGRAPH ’06. doi:10.1145/1185657.1185839 | es_ES |
dc.description.references | Pietroni, N., Tarini, M., & Cignoni, P. (2010). Almost Isometric Mesh Parameterization through Abstract Domains. IEEE Transactions on Visualization and Computer Graphics, 16(4), 621-635. doi:10.1109/tvcg.2009.96 | es_ES |
dc.description.references | Khan, D., Yan, D.-M., Ding, F., Zhuang, Y., & Zhang, X. (2018). Surface remeshing with robust user-guided segmentation. Computational Visual Media, 4(2), 113-122. doi:10.1007/s41095-018-0107-y | es_ES |
dc.description.references | Guidi, G., Russo, M., Ercoli, S., Remondino, F., Rizzi, A., & Menna, F. (2009). A Multi-Resolution Methodology for the 3D Modeling of Large and Complex Archeological Areas. International Journal of Architectural Computing, 7(1), 39-55. doi:10.1260/147807709788549439 | es_ES |
dc.description.references | Remondino, F., & El-Hakim, S. (2006). Image-based 3D Modelling: A Review. The Photogrammetric Record, 21(115), 269-291. doi:10.1111/j.1477-9730.2006.00383.x | es_ES |
dc.description.references | Bruno, F., Bruno, S., De Sensi, G., Luchi, M.-L., Mancuso, S., & Muzzupappa, M. (2010). From 3D reconstruction to virtual reality: A complete methodology for digital archaeological exhibition. Journal of Cultural Heritage, 11(1), 42-49. doi:10.1016/j.culher.2009.02.006 | es_ES |
dc.description.references | Unity, The Photogrammetry Workflowhttps://unity.com/solutions/photogrammetry. | es_ES |
dc.description.references | Blanco, S., Carrión, B., & Lerma, J. L. (2016). REVIEW OF AUGMENTED REALITY AND VIRTUAL REALITY TECHNIQUES IN ROCK ART. Proceedings of the ARQUEOLÓGICA 2.0 8th International Congress on Archaeology, Computer Graphics, Cultural Heritage and Innovation. doi:10.4995/arqueologica8.2016.3561 | es_ES |
dc.description.references | Behzadan, A. H., & Kamat, V. R. (2010). Scalable Algorithm for Resolving Incorrect Occlusion in Dynamic Augmented Reality Engineering Environments. Computer-Aided Civil and Infrastructure Engineering, 25(1), 3-19. doi:10.1111/j.1467-8667.2009.00601.x | es_ES |
dc.description.references | Tian, Y., Long, Y., Xia, D., Yao, H., & Zhang, J. (2015). Handling occlusions in augmented reality based on 3D reconstruction method. Neurocomputing, 156, 96-104. doi:10.1016/j.neucom.2014.12.081 | es_ES |
dc.description.references | Tian, Y., Guan, T., & Wang, C. (2010). Real-Time Occlusion Handling in Augmented Reality Based on an Object Tracking Approach. Sensors, 10(4), 2885-2900. doi:10.3390/s100402885 | es_ES |