Mostrar el registro sencillo del ítem
dc.contributor.author | Galindo Pastor, Carlos | es_ES |
dc.contributor.author | Monserrat Delpalillo, Francisco José | es_ES |
dc.contributor.author | Moyano-Fernández, J.J. | es_ES |
dc.date.accessioned | 2020-06-17T03:39:16Z | |
dc.date.available | 2020-06-17T03:39:16Z | |
dc.date.issued | 2018-07-16 | es_ES |
dc.identifier.issn | 1056-3911 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/146501 | |
dc.description.abstract | [EN] We consider the value (mu) over cap(nu) = lim(m -> infinity) m(-1) a(mL), where a(mL) is the last value of the vanishing sequence of H-0(mL) along a divisorial or irrational valuation nu centered at O-P2,(p), L (respectively, p) being a line (respectively, a point) of the projective plane P-2 over an algebraically closed field. This value contains, for valuations, similar information as that given by Seshadri constants for points. It is always true that (mu) over cap(nu) >= root 1/vol(nu) and minimal valuations are those satisfying the equality. In this paper, we prove that the Greuel-Lossen-Shustin Conjecture implies a variation of the Nagata Conjecture involving minimal valuations (that extends the one stated in [Comm. Anal. Geom. 25 (2017), pp. 125-161] to the whole set of divisorial and irrational valuations of the projective plane) which also implies the original Nagata Conjecture. We also provide infinitely many families of minimal very general valuations with an arbitrary number of Puiseux exponents and an asymptotic result that can be considered as evidence in the direction of the above-mentioned conjecture. | es_ES |
dc.description.sponsorship | The authors were partially supported by the Spanish Government Ministerio de Economia, Industria y Competitividad/FEDER, grants MTM2012-36917-C03-03, MTM2015-65764-C3-2-P, and MTM2016-81735-REDT, as well as by Universitat Jaume I, grant P1-1B2015-02. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Mathematical Society | es_ES |
dc.relation.ispartof | Journal of Algebraic Geometry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Minimal plane valuations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1090/jag/722 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2012-36917-C03-03/ES/SINGULARIDADES E INFORMACION. APLICACIONES A CAMPOS VECTORIALES Y CODIGOS CORRECTORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2015-65764-C3-2-P/ES/VALORACIONES, CAMPOS VECTORIALES ALGEBRAICOS Y CODIGOS CORRECTORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2016-81735-REDT/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UJI//P1-1B2015-02/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Galindo Pastor, C.; Monserrat Delpalillo, FJ.; Moyano-Fernández, J. (2018). Minimal plane valuations. Journal of Algebraic Geometry. 27(4):751-783. https://doi.org/10.1090/jag/722 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1090/jag/722 | es_ES |
dc.description.upvformatpinicio | 751 | es_ES |
dc.description.upvformatpfin | 783 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 27 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\378706 | es_ES |
dc.contributor.funder | Universitat Jaume I | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |