Mostrar el registro sencillo del ítem
dc.contributor.author | He, Jinbao | es_ES |
dc.contributor.author | Zhang, Min | es_ES |
dc.contributor.author | Primo Arnau, Ana Maria | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.contributor.author | Li, Zhaohui | es_ES |
dc.date.accessioned | 2020-06-20T03:30:36Z | |
dc.date.available | 2020-06-20T03:30:36Z | |
dc.date.issued | 2018-10-28 | es_ES |
dc.identifier.issn | 2050-7488 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/146715 | |
dc.description.abstract | [EN] The photocatalytic activity for benzene hydroxylation to phenol by hydrogen peroxide has been evaluated using a series of photocatalysts based on defective graphene. The series includes defective graphene containing or not Au and Cu2O nanoparticles. The latter exhibits the highest activity, but a very low phenol yield as a consequence of the occurrence of a large degree of mineralization. A considerable increase in phenol selectivity was achieved by modifying the surface of the Cu2O nanoparticles supported on defective graphene with long-chain alkanethiols. Under the optimal conditions using an octanethiol-modified Cu2O-graphene photocatalyst, a selectivity to phenol of about 64% at 30% benzene conversion was achieved. This remarkable selectivity was proposed to derive from the larger hydrophobicity of the alkanethiol-modified Cu2O-graphene photocatalyst that favors the preferential benzene adsorption versus adsorption of phenol and hydroxybenzenes. | es_ES |
dc.description.sponsorship | J. H. thanks the Chinese Scholarship Council for a graduate scholarship. Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa, CTQ2015-69653-CO2-R1 and Grapas) and Generalitat Valenciana (Prometeo 2017-083) is gratefully acknowledged. This work was also supported by NSFC (21872031, U1705251) and 973 Program (2014CB239303) of P. R. China. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation | MINECO/CTQ2015-69653-CO2-R1 | es_ES |
dc.relation.ispartof | Journal of Materials Chemistry A | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Selective photocatalytic benzene hydroxylation to phenol using surface- modified Cu2O supported on graphene | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c8ta07095d | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NKRDPC//2014CB239303/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//U1705251/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//21872031/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | He, J.; Zhang, M.; Primo Arnau, AM.; García Gómez, H.; Li, Z. (2018). Selective photocatalytic benzene hydroxylation to phenol using surface- modified Cu2O supported on graphene. Journal of Materials Chemistry A. 6(40):19782-19787. https://doi.org/10.1039/c8ta07095d | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/c8ta07095d | es_ES |
dc.description.upvformatpinicio | 19782 | es_ES |
dc.description.upvformatpfin | 19787 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 6 | es_ES |
dc.description.issue | 40 | es_ES |
dc.relation.pasarela | S\382626 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | China Scholarship Council | es_ES |
dc.contributor.funder | National Science Foundation, China | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | National Basic Research Program of China | es_ES |
dc.contributor.funder | National Natural Science Foundation of China | es_ES |
dc.contributor.funder | National Key Research and Development Program of China | es_ES |
dc.description.references | Xiang, Q., Yu, J., & Jaroniec, M. (2012). Graphene-based semiconductor photocatalysts. Chem. Soc. Rev., 41(2), 782-796. doi:10.1039/c1cs15172j | es_ES |
dc.description.references | Zhang, N., Zhang, Y., & Xu, Y.-J. (2012). Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale, 4(19), 5792. doi:10.1039/c2nr31480k | es_ES |
dc.description.references | Nourbakhsh, A., Cantoro, M., Vosch, T., Pourtois, G., Clemente, F., van der Veen, M. H., … Sels, B. F. (2010). Bandgap opening in oxygen plasma-treated graphene. Nanotechnology, 21(43), 435203. doi:10.1088/0957-4484/21/43/435203 | es_ES |
dc.description.references | Putri, L. K., Ong, W.-J., Chang, W. S., & Chai, S.-P. (2015). Heteroatom doped graphene in photocatalysis: A review. Applied Surface Science, 358, 2-14. doi:10.1016/j.apsusc.2015.08.177 | es_ES |
dc.description.references | Wang, X., Sun, G., Routh, P., Kim, D.-H., Huang, W., & Chen, P. (2014). Heteroatom-doped graphene materials: syntheses, properties and applications. Chem. Soc. Rev., 43(20), 7067-7098. doi:10.1039/c4cs00141a | es_ES |
dc.description.references | Yeh, T.-F., Teng, C.-Y., Chen, S.-J., & Teng, H. (2014). Nitrogen-Doped Graphene Oxide Quantum Dots as Photocatalysts for Overall Water-Splitting under Visible Light Illumination. Advanced Materials, 26(20), 3297-3303. doi:10.1002/adma.201305299 | es_ES |
dc.description.references | Chen, D., Zhang, H., Liu, Y., & Li, J. (2013). Graphene and its derivatives for the development of solar cells, photoelectrochemical, and photocatalytic applications. Energy & Environmental Science, 6(5), 1362. doi:10.1039/c3ee23586f | es_ES |
dc.description.references | Iwase, A., Ng, Y. H., Ishiguro, Y., Kudo, A., & Amal, R. (2011). Reduced Graphene Oxide as a Solid-State Electron Mediator in Z-Scheme Photocatalytic Water Splitting under Visible Light. Journal of the American Chemical Society, 133(29), 11054-11057. doi:10.1021/ja203296z | es_ES |
dc.description.references | Qu, D., Zheng, M., Du, P., Zhou, Y., Zhang, L., Li, D., … Sun, Z. (2013). Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale, 5(24), 12272. doi:10.1039/c3nr04402e | es_ES |
dc.description.references | Xu, Y., Mo, Y., Tian, J., Wang, P., Yu, H., & Yu, J. (2016). The synergistic effect of graphitic N and pyrrolic N for the enhanced photocatalytic performance of nitrogen-doped graphene/TiO2 nanocomposites. Applied Catalysis B: Environmental, 181, 810-817. doi:10.1016/j.apcatb.2015.08.049 | es_ES |
dc.description.references | Li, X., Yu, J., Wageh, S., Al-Ghamdi, A. A., & Xie, J. (2016). Graphene in Photocatalysis: A Review. Small, 12(48), 6640-6696. doi:10.1002/smll.201600382 | es_ES |
dc.description.references | Liang, Y. T., Vijayan, B. K., Gray, K. A., & Hersam, M. C. (2011). Minimizing Graphene Defects Enhances Titania Nanocomposite-Based Photocatalytic Reduction of CO2for Improved Solar Fuel Production. Nano Letters, 11(7), 2865-2870. doi:10.1021/nl2012906 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Primo, A., Concepcion, P., Alvaro, M., & Garcia, H. (2013). Doped Graphene as a Metal-Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and Styrene. Chemistry - A European Journal, 19(23), 7547-7554. doi:10.1002/chem.201300653 | es_ES |
dc.description.references | Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g | es_ES |
dc.description.references | Primo, A., Sánchez, E., Delgado, J. M., & García, H. (2014). High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon, 68, 777-783. doi:10.1016/j.carbon.2013.11.068 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Latorre-Sanchez, M., Asiri, A. M., Primo, A., & Garcia, H. (2015). Sulphur-doped graphene as metal-free carbocatalysts for the solventless aerobic oxidation of styrenes. Catalysis Communications, 65, 10-13. doi:10.1016/j.catcom.2015.02.018 | es_ES |
dc.description.references | Esteve-Adell, I., Crapart, B., Primo, A., Serp, P., & Garcia, H. (2017). Aqueous phase reforming of glycerol using doped graphenes as metal-free catalysts. Green Chemistry, 19(13), 3061-3068. doi:10.1039/c7gc01058c | es_ES |
dc.description.references | Primo, A., Neatu, F., Florea, M., Parvulescu, V., & Garcia, H. (2014). Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation. Nature Communications, 5(1). doi:10.1038/ncomms6291 | es_ES |
dc.description.references | Garcia, A., Albero, J., & García, H. (2017). Multilayer N-doped Graphene Films as Photoelectrodes for H2 Evolution. ChemPhotoChem, 1(9), 388-392. doi:10.1002/cptc.201700049 | es_ES |
dc.description.references | Lavorato, C., Primo, A., Molinari, R., & Garcia, H. (2013). N-Doped Graphene Derived from Biomass as a Visible-Light Photocatalyst for Hydrogen Generation from Water/Methanol Mixtures. Chemistry - A European Journal, 20(1), 187-194. doi:10.1002/chem.201303689 | es_ES |
dc.description.references | Latorre-Sánchez, M., Primo, A., & García, H. (2013). P-Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water-Methanol Mixtures. Angewandte Chemie International Edition, 52(45), 11813-11816. doi:10.1002/anie.201304505 | es_ES |
dc.description.references | Mateo, D., Esteve-Adell, I., Albero, J., Royo, J. F. S., Primo, A., & Garcia, H. (2016). 111 oriented gold nanoplatelets on multilayer graphene as visible light photocatalyst for overall water splitting. Nature Communications, 7(1). doi:10.1038/ncomms11819 | es_ES |
dc.description.references | Mateo, D., Albero, J., & García, H. (2017). Photoassisted methanation using Cu2O nanoparticles supported on graphene as a photocatalyst. Energy & Environmental Science, 10(11), 2392-2400. doi:10.1039/c7ee02287e | es_ES |
dc.description.references | Espinosa, J. C., Navalón, S., Álvaro, M., & García, H. (2016). Reduced Graphene Oxide as a Metal-Free Catalyst for the Light-Assisted Fenton-Like Reaction. ChemCatChem, 8(16), 2642-2648. doi:10.1002/cctc.201600364 | es_ES |
dc.description.references | Schmidt, R. J. (2005). Industrial catalytic processes—phenol production. Applied Catalysis A: General, 280(1), 89-103. doi:10.1016/j.apcata.2004.08.030 | es_ES |
dc.description.references | Balducci, L., Bianchi, D., Bortolo, R., D’Aloisio, R., Ricci, M., Tassinari, R., & Ungarelli, R. (2003). Direct Oxidation of Benzene to Phenol with Hydrogen Peroxide over a Modified Titanium Silicalite. Angewandte Chemie, 115(40), 5087-5090. doi:10.1002/ange.200352184 | es_ES |
dc.description.references | Liptáková, B., Hronec, M., & Cvengrošová, Z. (2000). Direct synthesis of phenol from benzene over hydroxyapatite catalysts. Catalysis Today, 61(1-4), 143-148. doi:10.1016/s0920-5861(00)00359-x | es_ES |
dc.description.references | Niwa, S. -i. (2002). A One-Step Conversion of Benzene to Phenol with a Palladium Membrane. Science, 295(5552), 105-107. doi:10.1126/science.1066527 | es_ES |
dc.description.references | Wen, G., Wu, S., Li, B., Dai, C., & Su, D. S. (2015). Active Sites and Mechanisms for Direct Oxidation of Benzene to Phenol over Carbon Catalysts. Angewandte Chemie International Edition, 54(13), 4105-4109. doi:10.1002/anie.201410093 | es_ES |
dc.description.references | Kang, Z., Wang, E., Mao, B., Su, Z., Gao, L., Niu, L., … Xu, L. (2006). Heterogeneous hydroxylation catalyzed by multi-walled carbon nanotubes at low temperature. Applied Catalysis A: General, 299, 212-217. doi:10.1016/j.apcata.2005.10.038 | es_ES |
dc.description.references | Wei, Q., Fan, H., Qin, F., Ma, Q., & Shen, W. (2018). Metal-free honeycomb-like porous carbon as catalyst for direct oxidation of benzene to phenol. Carbon, 133, 6-13. doi:10.1016/j.carbon.2018.03.009 | es_ES |
dc.description.references | Panov, G. I., Sheveleva, G. A., Kharitonov, A. S., Romannikov, V. N., & Vostrikova, L. A. (1992). Oxidation of benzene to phenol by nitrous oxide over Fe-ZSM-5 zeolites. Applied Catalysis A: General, 82(1), 31-36. doi:10.1016/0926-860x(92)80003-u | es_ES |
dc.description.references | Yang, J.-H., Sun, G., Gao, Y., Zhao, H., Tang, P., Tan, J., … Ma, D. (2013). Direct catalytic oxidation of benzene to phenol over metal-free graphene-based catalyst. Energy & Environmental Science, 6(3), 793. doi:10.1039/c3ee23623d | es_ES |
dc.description.references | Su, D. S., Wen, G., Wu, S., Peng, F., & Schlögl, R. (2016). Carbocatalysis in Liquid-Phase Reactions. Angewandte Chemie International Edition, 56(4), 936-964. doi:10.1002/anie.201600906 | es_ES |
dc.description.references | Wang, D., Wang, M., & Li, Z. (2015). Fe-Based Metal–Organic Frameworks for Highly Selective Photocatalytic Benzene Hydroxylation to Phenol. ACS Catalysis, 5(11), 6852-6857. doi:10.1021/acscatal.5b01949 | es_ES |
dc.description.references | Zheng, Z., Huang, B., Qin, X., Zhang, X., Dai, Y., & Whangbo, M.-H. (2011). Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M = Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. Journal of Materials Chemistry, 21(25), 9079. doi:10.1039/c1jm10983a | es_ES |
dc.description.references | Chen, X., Zhang, J., Fu, X., Antonietti, M., & Wang, X. (2009). Fe-g-C3N4-Catalyzed Oxidation of Benzene to Phenol Using Hydrogen Peroxide and Visible Light. Journal of the American Chemical Society, 131(33), 11658-11659. doi:10.1021/ja903923s | es_ES |
dc.description.references | Frindy, S., El Kadib, A., Lahcini, M., Primo, A., & García, H. (2016). Copper nanoparticles supported on graphene as an efficient catalyst for A3coupling of benzaldehydes. Catalysis Science & Technology, 6(12), 4306-4317. doi:10.1039/c5cy01414j | es_ES |
dc.description.references | Primo, A., Esteve-Adell, I., Coman, S. N., Candu, N., Parvulescu, V. I., & Garcia, H. (2015). One-Step Pyrolysis Preparation of 1.1.1 Oriented Gold Nanoplatelets Supported on Graphene and Six Orders of Magnitude Enhancement of the Resulting Catalytic Activity. Angewandte Chemie, 128(2), 617-622. doi:10.1002/ange.201508908 | es_ES |
dc.description.references | Frindy, S., El Kadib, A., Lahcini, M., Primo, A., & García, H. (2016). Nanosized Copper Supported on Graphene as Catalyst for the Oxidative C-O Cross-Coupling of Phenols. ChemistrySelect, 1(2), 157-162. doi:10.1002/slct.201600011 | es_ES |
dc.description.references | Blandez, J. F., Esteve-Adell, I., Alvaro, M., & García, H. (2015). Palladium nanoparticles supported on graphene as catalysts for the dehydrogenative coupling of hydrosilanes and amines. Catalysis Science & Technology, 5(4), 2167-2173. doi:10.1039/c4cy01486c | es_ES |
dc.description.references | Divya, P., & Ramaprabhu, S. (2014). Platinum–graphene hybrid nanostructure as anode and cathode electrocatalysts in proton exchange membrane fuel cells. J. Mater. Chem. A, 2(14), 4912-4918. doi:10.1039/c3ta15181f | es_ES |
dc.description.references | Shen, Y.-Y., Sun, Y., Zhou, L.-N., Li, Y.-J., & Yeung, E. S. (2014). Synthesis of ultrathin PtPdBi nanowire and its enhanced catalytic activity towards p-nitrophenol reduction. Journal of Materials Chemistry A, 2(9), 2977. doi:10.1039/c3ta14502f | es_ES |