- -

Viral Fitness Correlates with the Magnitude and Direction o the Perturbation Induced in the Host's Transcriptome: The Tobacco Etch Potyvirus-Tobacco Case Study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Viral Fitness Correlates with the Magnitude and Direction o the Perturbation Induced in the Host's Transcriptome: The Tobacco Etch Potyvirus-Tobacco Case Study

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cervera-Benet, Héctor es_ES
dc.contributor.author Ambros Palaguerri, Silvia es_ES
dc.contributor.author Bernet, Guillermo P. es_ES
dc.contributor.author Rodrigo Tarrega, Guillermo es_ES
dc.contributor.author Elena Fito, Santiago Fco es_ES
dc.date.accessioned 2020-06-20T03:30:40Z
dc.date.available 2020-06-20T03:30:40Z
dc.date.issued 2018-07 es_ES
dc.identifier.issn 0737-4038 es_ES
dc.identifier.uri http://hdl.handle.net/10251/146717
dc.description.abstract [EN] Determining the fitness of viral genotypes has become a standard practice in virology as it is essential to evaluate their evolutionary potential. Darwinian fitness, defined as the advantage of a given genotype with respect to a reference one, is a complex property that captures, in a single figure, differences in performance at every stage of viral infection. To what extent does viral fitness result from specific molecular interactions with host factors and regulatory networks during infection? Can we identify host genes in functional classes whose expression depends on viral fitness? Here, we compared the transcriptomes of tobacco plants infected with seven genotypes of tobacco etch potyvirus that differ in fitness. We found that the larger the fitness differences among genotypes, the more dissimilar the transcriptomic profiles are. Consistently, two different mutations, one in the viral RNA polymerase and another in the viral suppressor of RNA silencing, resulted in significantly similar gene expression profiles. Moreover, we identified host genes whose expression showed a significant correlation, positive or negative, with the virus' fitness. Differentially expressed genes which were positively correlated with viral fitness activate hormone- and RNA silencing-mediated pathways of plant defense. In contrast, those that were negatively correlated with fitness affect metabolism, reducing growth, and development. Overall, these results reveal the high information content of viral fitness and suggest its potential use to predict differences in genomic profiles of infected hosts. es_ES
dc.description.sponsorship We thank Francisca de la Iglesia and Paula Agudo for excellent technical assistance, the EvolSysVir lab members for help, comments and discussions, Rachel Whitaker for English proofreading, and Lorena Latorre (IBMCP Genomics Service) and Javier Forment (IBMCP Bioinformatics Service) for their assistance. This research was supported by grants from Spain's Agencia Estatal de Investigacion-FEDER (BFU2012-30805 and BFU2015-65037-P to S.F.E. and BFU2015-66894-P to G.R.) and Generalitat Valenciana (PROMETEOII/2014/021). es_ES
dc.language Inglés es_ES
dc.publisher Oxford University Press es_ES
dc.relation.ispartof Molecular Biology and Evolution es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject Host-virus interaction es_ES
dc.subject Nicotiana tabacum es_ES
dc.subject Potyvirus es_ES
dc.subject TEV es_ES
dc.subject Transcriptomics es_ES
dc.subject Virus evolution es_ES
dc.subject Viral fitness es_ES
dc.subject Systems biology
dc.subject Response to infection
dc.title Viral Fitness Correlates with the Magnitude and Direction o the Perturbation Induced in the Host's Transcriptome: The Tobacco Etch Potyvirus-Tobacco Case Study es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/molbev/msy038 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2012-30805/ES/EVOLUTIONARY SYSTEMS VIROLOGY: EPISTASIS AND THE RUGGEDNESS OF ADAPTIVE LANDSCAPES, MUTATIONS IN REGULATORY SEQUENCES, AND THE HOST DETERMINANTS OF VIRAL FITNESS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2015-65037-P/ES/EVOLUCION DE VIRUS EN HUESPEDES CON SUSCEPTIBILIDAD VARIABLE: CONSECUENCIAS EN EFICACIA Y VIRULENCIA DE CAMBIOS EN LAS REDES INTERACTOMICAS DE PROTEINAS VIRUS-HUESPED/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F021/ES/Comparative systems biology of host-virus interactions/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2015-66894-P /ES/MODELADO, DISEÑO DE NOVO E INGENIERIA DE INTERRUPTORES DE RNA QUE RESPONDEN A SEÑALES GENETICAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Cervera-Benet, H.; Ambros Palaguerri, S.; Bernet, GP.; Rodrigo Tarrega, G.; Elena Fito, SF. (2018). Viral Fitness Correlates with the Magnitude and Direction o the Perturbation Induced in the Host's Transcriptome: The Tobacco Etch Potyvirus-Tobacco Case Study. Molecular Biology and Evolution. 35(7):1599-1615. https://doi.org/10.1093/molbev/msy038 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1093/molbev/msy038 es_ES
dc.description.upvformatpinicio 1599 es_ES
dc.description.upvformatpfin 1615 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 35 es_ES
dc.description.issue 7 es_ES
dc.identifier.pmid 29562354 es_ES
dc.identifier.pmcid PMC5995217 es_ES
dc.relation.pasarela S\382633 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Acevedo, A., Brodsky, L., & Andino, R. (2013). Mutational and fitness landscapes of an RNA virus revealed through population sequencing. Nature, 505(7485), 686-690. doi:10.1038/nature12861 es_ES
dc.description.references Agudelo-Romero, P., Carbonell, P., Perez-Amador, M. A., & Elena, S. F. (2008). Virus Adaptation by Manipulation of Host’s Gene Expression. PLoS ONE, 3(6), e2397. doi:10.1371/journal.pone.0002397 es_ES
dc.description.references Alamillo, J. M., Saénz, P., & García, J. A. (2006). Salicylic acid-mediated and RNA-silencing defense mechanisms cooperate in the restriction of systemic spread of plum pox virus in tobacco. The Plant Journal, 48(2), 217-227. doi:10.1111/j.1365-313x.2006.02861.x es_ES
dc.description.references Alonso, R., Salavert, F., Garcia-Garcia, F., Carbonell-Caballero, J., Bleda, M., Garcia-Alonso, L., … Dopazo, J. (2015). Babelomics 5.0: functional interpretation for new generations of genomic data. Nucleic Acids Research, 43(W1), W117-W121. doi:10.1093/nar/gkv384 es_ES
dc.description.references Bailer, S., & Haas, J. (2009). Connecting viral with cellular interactomes. Current Opinion in Microbiology, 12(4), 453-459. doi:10.1016/j.mib.2009.06.004 es_ES
dc.description.references Barabási, A.-L., Gulbahce, N., & Loscalzo, J. (2010). Network medicine: a network-based approach to human disease. Nature Reviews Genetics, 12(1), 56-68. doi:10.1038/nrg2918 es_ES
dc.description.references Bedoya, L. C., & Daròs, J.-A. (2010). Stability of Tobacco etch virus infectious clones in plasmid vectors. Virus Research, 149(2), 234-240. doi:10.1016/j.virusres.2010.02.004 es_ES
dc.description.references Bernet, G. P., & Elena, S. F. (2015). Distribution of mutational fitness effects and of epistasis in the 5’ untranslated region of a plant RNA virus. BMC Evolutionary Biology, 15(1). doi:10.1186/s12862-015-0555-2 es_ES
dc.description.references Bolstad, B. M., Irizarry, R. ., Astrand, M., & Speed, T. P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19(2), 185-193. doi:10.1093/bioinformatics/19.2.185 es_ES
dc.description.references Bouquin, T., Meier, C., Foster, R., Nielsen, M. E., & Mundy, J. (2001). Control of Specific Gene Expression by Gibberellin and Brassinosteroid. Plant Physiology, 127(2), 450-458. doi:10.1104/pp.010173 es_ES
dc.description.references Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., … Vingron, M. (2001). Minimum information about a microarray experiment (MIAME)—toward standards for microarray data. Nature Genetics, 29(4), 365-371. doi:10.1038/ng1201-365 es_ES
dc.description.references Carrasco, P., Daròs, J. A., Agudelo-Romero, P., & Elena, S. F. (2007). A real-time RT-PCR assay for quantifying the fitness of tobacco etch virus in competition experiments. Journal of Virological Methods, 139(2), 181-188. doi:10.1016/j.jviromet.2006.09.020 es_ES
dc.description.references Carrasco, P., de la Iglesia, F., & Elena, S. F. (2007). Distribution of Fitness and Virulence Effects Caused by Single-Nucleotide Substitutions in Tobacco Etch Virus. Journal of Virology, 81(23), 12979-12984. doi:10.1128/jvi.00524-07 es_ES
dc.description.references Cervera, H., Lalić, J., & Elena, S. F. (2016). Effect of Host Species on Topography of the Fitness Landscape for a Plant RNA Virus. Journal of Virology, 90(22), 10160-10169. doi:10.1128/jvi.01243-16 es_ES
dc.description.references Chao, L. (1990). Fitness of RNA virus decreased by Muller’s ratchet. Nature, 348(6300), 454-455. doi:10.1038/348454a0 es_ES
dc.description.references Codoñer, F. M., Darós, J.-A., Solé, R. V., & Elena, S. F. (2006). The Fittest versus the Flattest: Experimental Confirmation of the Quasispecies Effect with Subviral Pathogens. PLoS Pathogens, 2(12), e136. doi:10.1371/journal.ppat.0020136 es_ES
dc.description.references Cui, H., Gobbato, E., Kracher, B., Qiu, J., Bautor, J., & Parker, J. E. (2016). A core function of EDS1 with PAD4 is to protect the salicylic acid defense sector in Arabidopsis immunity. New Phytologist, 213(4), 1802-1817. doi:10.1111/nph.14302 es_ES
dc.description.references Da Silva, J., & Wyatt, S. K. (2014). Fitness valleys constrain HIV-1’s adaptation to its secondary chemokine coreceptor. Journal of Evolutionary Biology, 27(3), 604-615. doi:10.1111/jeb.12329 es_ES
dc.description.references De la Iglesia, F., & Elena, S. F. (2007). Fitness Declines in Tobacco Etch Virus upon Serial Bottleneck Transfers. Journal of Virology, 81(10), 4941-4947. doi:10.1128/jvi.02528-06 es_ES
dc.description.references Denyer, K., Clarke, B., Hylton, C., Tatge, H., & Smith, A. M. (1996). The elongation of amylose and amylopectin chains in isolated starch granules. The Plant Journal, 10(6), 1135-1143. doi:10.1046/j.1365-313x.1996.10061135.x es_ES
dc.description.references Domingo, E., & Holland, J. J. (1997). RNA VIRUS MUTATIONS AND FITNESS FOR SURVIVAL. Annual Review of Microbiology, 51(1), 151-178. doi:10.1146/annurev.micro.51.1.151 es_ES
dc.description.references Domingo-Calap, P., Cuevas, J. M., & Sanjuán, R. (2009). The Fitness Effects of Random Mutations in Single-Stranded DNA and RNA Bacteriophages. PLoS Genetics, 5(11), e1000742. doi:10.1371/journal.pgen.1000742 es_ES
dc.description.references Duarte, E., Clarke, D., Moya, A., Domingo, E., & Holland, J. (1992). Rapid fitness losses in mammalian RNA virus clones due to Muller’s ratchet. Proceedings of the National Academy of Sciences, 89(13), 6015-6019. doi:10.1073/pnas.89.13.6015 es_ES
dc.description.references Elena, S. F., & Rodrigo, G. (2012). Towards an integrated molecular model of plant–virus interactions. Current Opinion in Virology, 2(6), 719-724. doi:10.1016/j.coviro.2012.09.004 es_ES
dc.description.references Fernandez-Pozo, N., Menda, N., Edwards, J. D., Saha, S., Tecle, I. Y., Strickler, S. R., … Mueller, L. A. (2014). The Sol Genomics Network (SGN)—from genotype to phenotype to breeding. Nucleic Acids Research, 43(D1), D1036-D1041. doi:10.1093/nar/gku1195 es_ES
dc.description.references Finzer, P. (2017). How we become ill. EMBO reports, 18(4), 515-518. doi:10.15252/embr.201743948 es_ES
dc.description.references Friedel, C. C., & Haas, J. (2011). Virus–host interactomes and global models of virus-infected cells. Trends in Microbiology, 19(10), 501-508. doi:10.1016/j.tim.2011.07.003 es_ES
dc.description.references Geng, C., Wang, H.-Y., Liu, J., Yan, Z.-Y., Tian, Y.-P., Yuan, X.-F., … Li, X.-D. (2016). Transcriptomic changes in Nicotiana benthamiana plants inoculated with the wild-type or an attenuated mutant of Tobacco vein banding mosaic virus. Molecular Plant Pathology, 18(8), 1175-1188. doi:10.1111/mpp.12471 es_ES
dc.description.references Hafrén, A., Lõhmus, A., & Mäkinen, K. (2015). Formation of Potato Virus A-Induced RNA Granules and Viral Translation Are Interrelated Processes Required for Optimal Virus Accumulation. PLOS Pathogens, 11(12), e1005314. doi:10.1371/journal.ppat.1005314 es_ES
dc.description.references Henty-Ridilla, J. L., Li, J., Day, B., & Staiger, C. J. (2014). ACTIN DEPOLYMERIZING FACTOR4 Regulates Actin Dynamics during Innate Immune Signaling in Arabidopsis. The Plant Cell, 26(1), 340-352. doi:10.1105/tpc.113.122499 es_ES
dc.description.references Hillung, J., Cuevas, J. M., Valverde, S., & Elena, S. F. (2014). EXPERIMENTAL EVOLUTION OF AN EMERGING PLANT VIRUS IN HOST GENOTYPES THAT DIFFER IN THEIR SUSCEPTIBILITY TO INFECTION. Evolution, 68(9), 2467-2480. doi:10.1111/evo.12458 es_ES
dc.description.references Hillung, J., García-García, F., Dopazo, J., Cuevas, J. M., & Elena, S. F. (2016). The transcriptomics of an experimentally evolved plant-virus interaction. Scientific Reports, 6(1). doi:10.1038/srep24901 es_ES
dc.description.references Hyun, T. K., Albacete, A., van der Graaff, E., Eom, S. H., Großkinsky, D. K., Böhm, H., … Roitsch, T. (2015). The Arabidopsis PLAT domain protein1 promotes abiotic stress tolerance and growth in tobacco. Transgenic Research, 24(4), 651-663. doi:10.1007/s11248-015-9868-6 es_ES
dc.description.references Lalić, J., Agudelo-Romero, P., Carrasco, P., & Elena, S. F. (2010). Adaptation of tobacco etch potyvirus to a susceptible ecotype of Arabidopsis thaliana capacitates it for systemic infection of resistant ecotypes. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1548), 1997-2007. doi:10.1098/rstb.2010.0044 es_ES
dc.description.references Lalić, J., Cuevas, J. M., & Elena, S. F. (2011). Effect of Host Species on the Distribution of Mutational Fitness Effects for an RNA Virus. PLoS Genetics, 7(11), e1002378. doi:10.1371/journal.pgen.1002378 es_ES
dc.description.references Lalić, J., & Elena, S. F. (2013). Epistasis between mutations is host-dependent for an RNA virus. Biology Letters, 9(1), 20120396. doi:10.1098/rsbl.2012.0396 es_ES
dc.description.references Lalić, J., & Elena, S. F. (2015). The impact of high-order epistasis in the within-host fitness of a positive-sense plant RNA virus. Journal of Evolutionary Biology, 28(12), 2236-2247. doi:10.1111/jeb.12748 es_ES
dc.description.references Lamesch, P., Berardini, T. Z., Li, D., Swarbreck, D., Wilks, C., Sasidharan, R., … Huala, E. (2011). The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Research, 40(D1), D1202-D1210. doi:10.1093/nar/gkr1090 es_ES
dc.description.references Li, Y., Jing, Y., Li, J., Xu, G., & Lin, R. (2014). Arabidopsis VQ MOTIF-CONTAINING PROTEIN29 Represses Seedling Deetiolation by Interacting with PHYTOCHROME-INTERACTING FACTOR1. Plant Physiology, 164(4), 2068-2080. doi:10.1104/pp.113.234492 es_ES
dc.description.references Linnen, C. R., & Hoekstra, H. E. (2009). Measuring Natural Selection on Genotypes and Phenotypes in the Wild. Cold Spring Harbor Symposia on Quantitative Biology, 74(0), 155-168. doi:10.1101/sqb.2009.74.045 es_ES
dc.description.references Martinez-Picado, J., & Martínez, M. A. (2008). HIV-1 reverse transcriptase inhibitor resistance mutations and fitness: A view from the clinic and ex vivo. Virus Research, 134(1-2), 104-123. doi:10.1016/j.virusres.2007.12.021 es_ES
dc.description.references Novella, I. S., Gilbertson, D. L., Borrego, B., Domingo, E., & Holland, J. J. (2005). Adaptability costs in immune escape variants of vesicular stomatitis virus. Virus Research, 107(1), 27-34. doi:10.1016/j.virusres.2004.06.007 es_ES
dc.description.references Orr, H. A. (2009). Fitness and its role in evolutionary genetics. Nature Reviews Genetics, 10(8), 531-539. doi:10.1038/nrg2603 es_ES
dc.description.references Peris, J. B., Davis, P., Cuevas, J. M., Nebot, M. R., & Sanjuán, R. (2010). Distribution of Fitness Effects Caused by Single-Nucleotide Substitutions in Bacteriophage f1. Genetics, 185(2), 603-609. doi:10.1534/genetics.110.115162 es_ES
dc.description.references Pesko, K., Voigt, E. A., Swick, A., Morley, V. J., Timm, C., Yin, J., & Turner, P. E. (2015). Genome rearrangement affects RNA virus adaptability on prostate cancer cells. Frontiers in Genetics, 6. doi:10.3389/fgene.2015.00121 es_ES
dc.description.references Revers, F., & García, J. A. (2015). Molecular Biology of Potyviruses. Advances in Virus Research, 101-199. doi:10.1016/bs.aivir.2014.11.006 es_ES
dc.description.references Robaglia, C., & Caranta, C. (2006). Translation initiation factors: a weak link in plant RNA virus infection. Trends in Plant Science, 11(1), 40-45. doi:10.1016/j.tplants.2005.11.004 es_ES
dc.description.references Rodrigo, G., Carrera, J., Ruiz-Ferrer, V., del Toro, F. J., Llave, C., Voinnet, O., & Elena, S. F. (2012). A Meta-Analysis Reveals the Commonalities and Differences in Arabidopsis thaliana Response to Different Viral Pathogens. PLoS ONE, 7(7), e40526. doi:10.1371/journal.pone.0040526 es_ES
dc.description.references Sánchez, F., Manrique, P., Mansilla, C., Lunello, P., Wang, X., Rodrigo, G., … Ponz, F. (2015). Viral Strain-Specific Differential Alterations in Arabidopsis Developmental Patterns. Molecular Plant-Microbe Interactions®, 28(12), 1304-1315. doi:10.1094/mpmi-05-15-0111-r es_ES
dc.description.references Sanjuan, R., Moya, A., & Elena, S. F. (2004). The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus. Proceedings of the National Academy of Sciences, 101(22), 8396-8401. doi:10.1073/pnas.0400146101 es_ES
dc.description.references Schmidt, G. W., & Delaney, S. K. (2010). Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Molecular Genetics and Genomics, 283(3), 233-241. doi:10.1007/s00438-010-0511-1 es_ES
dc.description.references Schoor, S., Farrow, S., Blaschke, H., Lee, S., Perry, G., von Schwartzenberg, K., … Moffatt, B. (2011). Adenosine Kinase Contributes to Cytokinin Interconversion in Arabidopsis. Plant Physiology, 157(2), 659-672. doi:10.1104/pp.111.181560 es_ES
dc.description.references Tan, S.-L., Ganji, G., Paeper, B., Proll, S., & Katze, M. G. (2007). Systems biology and the host response to viral infection. Nature Biotechnology, 25(12), 1383-1389. doi:10.1038/nbt1207-1383 es_ES
dc.description.references Tang, B. S. F., Chan, K., Cheng, V. C. C., Woo, P. C. Y., Lau, S. K. P., Lam, C. C. K., … Yuen, K. (2005). Comparative Host Gene Transcription by Microarray Analysis Early after Infection of the Huh7 Cell Line by Severe Acute Respiratory Syndrome Coronavirus and Human Coronavirus 229E. Journal of Virology, 79(10), 6180-6193. doi:10.1128/jvi.79.10.6180-6193.2005 es_ES
dc.description.references Tian, T., Liu, Y., Yan, H., You, Q., Yi, X., Du, Z., … Su, Z. (2017). agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Research, 45(W1), W122-W129. doi:10.1093/nar/gkx382 es_ES
dc.description.references Torres-Barceló, C., Martín, S., Daròs, J.-A., & Elena, S. F. (2008). From Hypo- to Hypersuppression: Effect of Amino Acid Substitutions on the RNA-Silencing Suppressor Activity of the Tobacco etch potyvirus HC-Pro. Genetics, 180(2), 1039-1049. doi:10.1534/genetics.108.091363 es_ES
dc.description.references Vale, P. F., Choisy, M., Froissart, R., Sanjuán, R., & Gandon, S. (2012). THE DISTRIBUTION OF MUTATIONAL FITNESS EFFECTS OF PHAGE φX174 ON DIFFERENT HOSTS. Evolution, 66(11), 3495-3507. doi:10.1111/j.1558-5646.2012.01691.x es_ES
dc.description.references Vijayapalani, P., Maeshima, M., Nagasaki-Takekuchi, N., & Miller, W. A. (2012). Interaction of the Trans-Frame Potyvirus Protein P3N-PIPO with Host Protein PCaP1 Facilitates Potyvirus Movement. PLoS Pathogens, 8(4), e1002639. doi:10.1371/journal.ppat.1002639 es_ES
dc.description.references Visher, E., Whitefield, S. E., McCrone, J. T., Fitzsimmons, W., & Lauring, A. S. (2016). The Mutational Robustness of Influenza A Virus. PLOS Pathogens, 12(8), e1005856. doi:10.1371/journal.ppat.1005856 es_ES
dc.description.references Viswanathan, K., & Früh, K. (2007). Viral proteomics: global evaluation of viruses and their interaction with the host. Expert Review of Proteomics, 4(6), 815-829. doi:10.1586/14789450.4.6.815 es_ES
dc.description.references Wachter, A., & Hartmann, L. (2014). NMD: Nonsense-Mediated Defense. Cell Host & Microbe, 16(3), 273-275. doi:10.1016/j.chom.2014.08.015 es_ES
dc.description.references Wargo, A. R., & Kurath, G. (2012). Viral fitness: definitions, measurement, and current insights. Current Opinion in Virology, 2(5), 538-545. doi:10.1016/j.coviro.2012.07.007 es_ES
dc.description.references Westerhout, E. M. (2005). HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome. Nucleic Acids Research, 33(2), 796-804. doi:10.1093/nar/gki220 es_ES
dc.description.references Willemsen, A., Zwart, M. P., Higueras, P., Sardanyés, J., & Elena, S. F. (2016). Predicting the Stability of Homologous Gene Duplications in a Plant RNA Virus. Genome Biology and Evolution, 8(9), 3065-3082. doi:10.1093/gbe/evw219 es_ES
dc.description.references Xie, M., Ren, G., Zhang, C., & Yu, B. (2012). The DNA- and RNA-binding protein FACTOR of DNA METHYLATION 1 requires XH domain-mediated complex formation for its function in RNA-directed DNA methylation. The Plant Journal, 72(3), 491-500. doi:10.1111/j.1365-313x.2012.05092.x es_ES
dc.description.references Zhan, G.-M., Li, R.-J., Hu, Z.-Y., Liu, J., Deng, L.-B., Lu, S.-Y., & Hua, W. (2014). Cosuppression of RBCS3B in Arabidopsis leads to severe photoinhibition caused by ROS accumulation. Plant Cell Reports, 33(7), 1091-1108. doi:10.1007/s00299-014-1597-4 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem