Mostrar el registro sencillo del ítem
dc.contributor.author | Cervera-Benet, Héctor | es_ES |
dc.contributor.author | Ambros Palaguerri, Silvia | es_ES |
dc.contributor.author | Bernet, Guillermo P. | es_ES |
dc.contributor.author | Rodrigo Tarrega, Guillermo | es_ES |
dc.contributor.author | Elena Fito, Santiago Fco | es_ES |
dc.date.accessioned | 2020-06-20T03:30:40Z | |
dc.date.available | 2020-06-20T03:30:40Z | |
dc.date.issued | 2018-07 | es_ES |
dc.identifier.issn | 0737-4038 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/146717 | |
dc.description.abstract | [EN] Determining the fitness of viral genotypes has become a standard practice in virology as it is essential to evaluate their evolutionary potential. Darwinian fitness, defined as the advantage of a given genotype with respect to a reference one, is a complex property that captures, in a single figure, differences in performance at every stage of viral infection. To what extent does viral fitness result from specific molecular interactions with host factors and regulatory networks during infection? Can we identify host genes in functional classes whose expression depends on viral fitness? Here, we compared the transcriptomes of tobacco plants infected with seven genotypes of tobacco etch potyvirus that differ in fitness. We found that the larger the fitness differences among genotypes, the more dissimilar the transcriptomic profiles are. Consistently, two different mutations, one in the viral RNA polymerase and another in the viral suppressor of RNA silencing, resulted in significantly similar gene expression profiles. Moreover, we identified host genes whose expression showed a significant correlation, positive or negative, with the virus' fitness. Differentially expressed genes which were positively correlated with viral fitness activate hormone- and RNA silencing-mediated pathways of plant defense. In contrast, those that were negatively correlated with fitness affect metabolism, reducing growth, and development. Overall, these results reveal the high information content of viral fitness and suggest its potential use to predict differences in genomic profiles of infected hosts. | es_ES |
dc.description.sponsorship | We thank Francisca de la Iglesia and Paula Agudo for excellent technical assistance, the EvolSysVir lab members for help, comments and discussions, Rachel Whitaker for English proofreading, and Lorena Latorre (IBMCP Genomics Service) and Javier Forment (IBMCP Bioinformatics Service) for their assistance. This research was supported by grants from Spain's Agencia Estatal de Investigacion-FEDER (BFU2012-30805 and BFU2015-65037-P to S.F.E. and BFU2015-66894-P to G.R.) and Generalitat Valenciana (PROMETEOII/2014/021). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Oxford University Press | es_ES |
dc.relation.ispartof | Molecular Biology and Evolution | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | Host-virus interaction | es_ES |
dc.subject | Nicotiana tabacum | es_ES |
dc.subject | Potyvirus | es_ES |
dc.subject | TEV | es_ES |
dc.subject | Transcriptomics | es_ES |
dc.subject | Virus evolution | es_ES |
dc.subject | Viral fitness | es_ES |
dc.subject | Systems biology | |
dc.subject | Response to infection | |
dc.title | Viral Fitness Correlates with the Magnitude and Direction o the Perturbation Induced in the Host's Transcriptome: The Tobacco Etch Potyvirus-Tobacco Case Study | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1093/molbev/msy038 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2012-30805/ES/EVOLUTIONARY SYSTEMS VIROLOGY: EPISTASIS AND THE RUGGEDNESS OF ADAPTIVE LANDSCAPES, MUTATIONS IN REGULATORY SEQUENCES, AND THE HOST DETERMINANTS OF VIRAL FITNESS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2015-65037-P/ES/EVOLUCION DE VIRUS EN HUESPEDES CON SUSCEPTIBILIDAD VARIABLE: CONSECUENCIAS EN EFICACIA Y VIRULENCIA DE CAMBIOS EN LAS REDES INTERACTOMICAS DE PROTEINAS VIRUS-HUESPED/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F021/ES/Comparative systems biology of host-virus interactions/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2015-66894-P /ES/MODELADO, DISEÑO DE NOVO E INGENIERIA DE INTERRUPTORES DE RNA QUE RESPONDEN A SEÑALES GENETICAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Cervera-Benet, H.; Ambros Palaguerri, S.; Bernet, GP.; Rodrigo Tarrega, G.; Elena Fito, SF. (2018). Viral Fitness Correlates with the Magnitude and Direction o the Perturbation Induced in the Host's Transcriptome: The Tobacco Etch Potyvirus-Tobacco Case Study. Molecular Biology and Evolution. 35(7):1599-1615. https://doi.org/10.1093/molbev/msy038 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1093/molbev/msy038 | es_ES |
dc.description.upvformatpinicio | 1599 | es_ES |
dc.description.upvformatpfin | 1615 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 35 | es_ES |
dc.description.issue | 7 | es_ES |
dc.identifier.pmid | 29562354 | es_ES |
dc.identifier.pmcid | PMC5995217 | es_ES |
dc.relation.pasarela | S\382633 | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Acevedo, A., Brodsky, L., & Andino, R. (2013). Mutational and fitness landscapes of an RNA virus revealed through population sequencing. Nature, 505(7485), 686-690. doi:10.1038/nature12861 | es_ES |
dc.description.references | Agudelo-Romero, P., Carbonell, P., Perez-Amador, M. A., & Elena, S. F. (2008). Virus Adaptation by Manipulation of Host’s Gene Expression. PLoS ONE, 3(6), e2397. doi:10.1371/journal.pone.0002397 | es_ES |
dc.description.references | Alamillo, J. M., Saénz, P., & García, J. A. (2006). Salicylic acid-mediated and RNA-silencing defense mechanisms cooperate in the restriction of systemic spread of plum pox virus in tobacco. The Plant Journal, 48(2), 217-227. doi:10.1111/j.1365-313x.2006.02861.x | es_ES |
dc.description.references | Alonso, R., Salavert, F., Garcia-Garcia, F., Carbonell-Caballero, J., Bleda, M., Garcia-Alonso, L., … Dopazo, J. (2015). Babelomics 5.0: functional interpretation for new generations of genomic data. Nucleic Acids Research, 43(W1), W117-W121. doi:10.1093/nar/gkv384 | es_ES |
dc.description.references | Bailer, S., & Haas, J. (2009). Connecting viral with cellular interactomes. Current Opinion in Microbiology, 12(4), 453-459. doi:10.1016/j.mib.2009.06.004 | es_ES |
dc.description.references | Barabási, A.-L., Gulbahce, N., & Loscalzo, J. (2010). Network medicine: a network-based approach to human disease. Nature Reviews Genetics, 12(1), 56-68. doi:10.1038/nrg2918 | es_ES |
dc.description.references | Bedoya, L. C., & Daròs, J.-A. (2010). Stability of Tobacco etch virus infectious clones in plasmid vectors. Virus Research, 149(2), 234-240. doi:10.1016/j.virusres.2010.02.004 | es_ES |
dc.description.references | Bernet, G. P., & Elena, S. F. (2015). Distribution of mutational fitness effects and of epistasis in the 5’ untranslated region of a plant RNA virus. BMC Evolutionary Biology, 15(1). doi:10.1186/s12862-015-0555-2 | es_ES |
dc.description.references | Bolstad, B. M., Irizarry, R. ., Astrand, M., & Speed, T. P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19(2), 185-193. doi:10.1093/bioinformatics/19.2.185 | es_ES |
dc.description.references | Bouquin, T., Meier, C., Foster, R., Nielsen, M. E., & Mundy, J. (2001). Control of Specific Gene Expression by Gibberellin and Brassinosteroid. Plant Physiology, 127(2), 450-458. doi:10.1104/pp.010173 | es_ES |
dc.description.references | Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., … Vingron, M. (2001). Minimum information about a microarray experiment (MIAME)—toward standards for microarray data. Nature Genetics, 29(4), 365-371. doi:10.1038/ng1201-365 | es_ES |
dc.description.references | Carrasco, P., Daròs, J. A., Agudelo-Romero, P., & Elena, S. F. (2007). A real-time RT-PCR assay for quantifying the fitness of tobacco etch virus in competition experiments. Journal of Virological Methods, 139(2), 181-188. doi:10.1016/j.jviromet.2006.09.020 | es_ES |
dc.description.references | Carrasco, P., de la Iglesia, F., & Elena, S. F. (2007). Distribution of Fitness and Virulence Effects Caused by Single-Nucleotide Substitutions in Tobacco Etch Virus. Journal of Virology, 81(23), 12979-12984. doi:10.1128/jvi.00524-07 | es_ES |
dc.description.references | Cervera, H., Lalić, J., & Elena, S. F. (2016). Effect of Host Species on Topography of the Fitness Landscape for a Plant RNA Virus. Journal of Virology, 90(22), 10160-10169. doi:10.1128/jvi.01243-16 | es_ES |
dc.description.references | Chao, L. (1990). Fitness of RNA virus decreased by Muller’s ratchet. Nature, 348(6300), 454-455. doi:10.1038/348454a0 | es_ES |
dc.description.references | Codoñer, F. M., Darós, J.-A., Solé, R. V., & Elena, S. F. (2006). The Fittest versus the Flattest: Experimental Confirmation of the Quasispecies Effect with Subviral Pathogens. PLoS Pathogens, 2(12), e136. doi:10.1371/journal.ppat.0020136 | es_ES |
dc.description.references | Cui, H., Gobbato, E., Kracher, B., Qiu, J., Bautor, J., & Parker, J. E. (2016). A core function of EDS1 with PAD4 is to protect the salicylic acid defense sector in Arabidopsis immunity. New Phytologist, 213(4), 1802-1817. doi:10.1111/nph.14302 | es_ES |
dc.description.references | Da Silva, J., & Wyatt, S. K. (2014). Fitness valleys constrain HIV-1’s adaptation to its secondary chemokine coreceptor. Journal of Evolutionary Biology, 27(3), 604-615. doi:10.1111/jeb.12329 | es_ES |
dc.description.references | De la Iglesia, F., & Elena, S. F. (2007). Fitness Declines in Tobacco Etch Virus upon Serial Bottleneck Transfers. Journal of Virology, 81(10), 4941-4947. doi:10.1128/jvi.02528-06 | es_ES |
dc.description.references | Denyer, K., Clarke, B., Hylton, C., Tatge, H., & Smith, A. M. (1996). The elongation of amylose and amylopectin chains in isolated starch granules. The Plant Journal, 10(6), 1135-1143. doi:10.1046/j.1365-313x.1996.10061135.x | es_ES |
dc.description.references | Domingo, E., & Holland, J. J. (1997). RNA VIRUS MUTATIONS AND FITNESS FOR SURVIVAL. Annual Review of Microbiology, 51(1), 151-178. doi:10.1146/annurev.micro.51.1.151 | es_ES |
dc.description.references | Domingo-Calap, P., Cuevas, J. M., & Sanjuán, R. (2009). The Fitness Effects of Random Mutations in Single-Stranded DNA and RNA Bacteriophages. PLoS Genetics, 5(11), e1000742. doi:10.1371/journal.pgen.1000742 | es_ES |
dc.description.references | Duarte, E., Clarke, D., Moya, A., Domingo, E., & Holland, J. (1992). Rapid fitness losses in mammalian RNA virus clones due to Muller’s ratchet. Proceedings of the National Academy of Sciences, 89(13), 6015-6019. doi:10.1073/pnas.89.13.6015 | es_ES |
dc.description.references | Elena, S. F., & Rodrigo, G. (2012). Towards an integrated molecular model of plant–virus interactions. Current Opinion in Virology, 2(6), 719-724. doi:10.1016/j.coviro.2012.09.004 | es_ES |
dc.description.references | Fernandez-Pozo, N., Menda, N., Edwards, J. D., Saha, S., Tecle, I. Y., Strickler, S. R., … Mueller, L. A. (2014). The Sol Genomics Network (SGN)—from genotype to phenotype to breeding. Nucleic Acids Research, 43(D1), D1036-D1041. doi:10.1093/nar/gku1195 | es_ES |
dc.description.references | Finzer, P. (2017). How we become ill. EMBO reports, 18(4), 515-518. doi:10.15252/embr.201743948 | es_ES |
dc.description.references | Friedel, C. C., & Haas, J. (2011). Virus–host interactomes and global models of virus-infected cells. Trends in Microbiology, 19(10), 501-508. doi:10.1016/j.tim.2011.07.003 | es_ES |
dc.description.references | Geng, C., Wang, H.-Y., Liu, J., Yan, Z.-Y., Tian, Y.-P., Yuan, X.-F., … Li, X.-D. (2016). Transcriptomic changes in Nicotiana benthamiana plants inoculated with the wild-type or an attenuated mutant of Tobacco vein banding mosaic virus. Molecular Plant Pathology, 18(8), 1175-1188. doi:10.1111/mpp.12471 | es_ES |
dc.description.references | Hafrén, A., Lõhmus, A., & Mäkinen, K. (2015). Formation of Potato Virus A-Induced RNA Granules and Viral Translation Are Interrelated Processes Required for Optimal Virus Accumulation. PLOS Pathogens, 11(12), e1005314. doi:10.1371/journal.ppat.1005314 | es_ES |
dc.description.references | Henty-Ridilla, J. L., Li, J., Day, B., & Staiger, C. J. (2014). ACTIN DEPOLYMERIZING FACTOR4 Regulates Actin Dynamics during Innate Immune Signaling in Arabidopsis. The Plant Cell, 26(1), 340-352. doi:10.1105/tpc.113.122499 | es_ES |
dc.description.references | Hillung, J., Cuevas, J. M., Valverde, S., & Elena, S. F. (2014). EXPERIMENTAL EVOLUTION OF AN EMERGING PLANT VIRUS IN HOST GENOTYPES THAT DIFFER IN THEIR SUSCEPTIBILITY TO INFECTION. Evolution, 68(9), 2467-2480. doi:10.1111/evo.12458 | es_ES |
dc.description.references | Hillung, J., García-García, F., Dopazo, J., Cuevas, J. M., & Elena, S. F. (2016). The transcriptomics of an experimentally evolved plant-virus interaction. Scientific Reports, 6(1). doi:10.1038/srep24901 | es_ES |
dc.description.references | Hyun, T. K., Albacete, A., van der Graaff, E., Eom, S. H., Großkinsky, D. K., Böhm, H., … Roitsch, T. (2015). The Arabidopsis PLAT domain protein1 promotes abiotic stress tolerance and growth in tobacco. Transgenic Research, 24(4), 651-663. doi:10.1007/s11248-015-9868-6 | es_ES |
dc.description.references | Lalić, J., Agudelo-Romero, P., Carrasco, P., & Elena, S. F. (2010). Adaptation of tobacco etch potyvirus to a susceptible ecotype of Arabidopsis thaliana capacitates it for systemic infection of resistant ecotypes. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1548), 1997-2007. doi:10.1098/rstb.2010.0044 | es_ES |
dc.description.references | Lalić, J., Cuevas, J. M., & Elena, S. F. (2011). Effect of Host Species on the Distribution of Mutational Fitness Effects for an RNA Virus. PLoS Genetics, 7(11), e1002378. doi:10.1371/journal.pgen.1002378 | es_ES |
dc.description.references | Lalić, J., & Elena, S. F. (2013). Epistasis between mutations is host-dependent for an RNA virus. Biology Letters, 9(1), 20120396. doi:10.1098/rsbl.2012.0396 | es_ES |
dc.description.references | Lalić, J., & Elena, S. F. (2015). The impact of high-order epistasis in the within-host fitness of a positive-sense plant RNA virus. Journal of Evolutionary Biology, 28(12), 2236-2247. doi:10.1111/jeb.12748 | es_ES |
dc.description.references | Lamesch, P., Berardini, T. Z., Li, D., Swarbreck, D., Wilks, C., Sasidharan, R., … Huala, E. (2011). The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Research, 40(D1), D1202-D1210. doi:10.1093/nar/gkr1090 | es_ES |
dc.description.references | Li, Y., Jing, Y., Li, J., Xu, G., & Lin, R. (2014). Arabidopsis VQ MOTIF-CONTAINING PROTEIN29 Represses Seedling Deetiolation by Interacting with PHYTOCHROME-INTERACTING FACTOR1. Plant Physiology, 164(4), 2068-2080. doi:10.1104/pp.113.234492 | es_ES |
dc.description.references | Linnen, C. R., & Hoekstra, H. E. (2009). Measuring Natural Selection on Genotypes and Phenotypes in the Wild. Cold Spring Harbor Symposia on Quantitative Biology, 74(0), 155-168. doi:10.1101/sqb.2009.74.045 | es_ES |
dc.description.references | Martinez-Picado, J., & Martínez, M. A. (2008). HIV-1 reverse transcriptase inhibitor resistance mutations and fitness: A view from the clinic and ex vivo. Virus Research, 134(1-2), 104-123. doi:10.1016/j.virusres.2007.12.021 | es_ES |
dc.description.references | Novella, I. S., Gilbertson, D. L., Borrego, B., Domingo, E., & Holland, J. J. (2005). Adaptability costs in immune escape variants of vesicular stomatitis virus. Virus Research, 107(1), 27-34. doi:10.1016/j.virusres.2004.06.007 | es_ES |
dc.description.references | Orr, H. A. (2009). Fitness and its role in evolutionary genetics. Nature Reviews Genetics, 10(8), 531-539. doi:10.1038/nrg2603 | es_ES |
dc.description.references | Peris, J. B., Davis, P., Cuevas, J. M., Nebot, M. R., & Sanjuán, R. (2010). Distribution of Fitness Effects Caused by Single-Nucleotide Substitutions in Bacteriophage f1. Genetics, 185(2), 603-609. doi:10.1534/genetics.110.115162 | es_ES |
dc.description.references | Pesko, K., Voigt, E. A., Swick, A., Morley, V. J., Timm, C., Yin, J., & Turner, P. E. (2015). Genome rearrangement affects RNA virus adaptability on prostate cancer cells. Frontiers in Genetics, 6. doi:10.3389/fgene.2015.00121 | es_ES |
dc.description.references | Revers, F., & García, J. A. (2015). Molecular Biology of Potyviruses. Advances in Virus Research, 101-199. doi:10.1016/bs.aivir.2014.11.006 | es_ES |
dc.description.references | Robaglia, C., & Caranta, C. (2006). Translation initiation factors: a weak link in plant RNA virus infection. Trends in Plant Science, 11(1), 40-45. doi:10.1016/j.tplants.2005.11.004 | es_ES |
dc.description.references | Rodrigo, G., Carrera, J., Ruiz-Ferrer, V., del Toro, F. J., Llave, C., Voinnet, O., & Elena, S. F. (2012). A Meta-Analysis Reveals the Commonalities and Differences in Arabidopsis thaliana Response to Different Viral Pathogens. PLoS ONE, 7(7), e40526. doi:10.1371/journal.pone.0040526 | es_ES |
dc.description.references | Sánchez, F., Manrique, P., Mansilla, C., Lunello, P., Wang, X., Rodrigo, G., … Ponz, F. (2015). Viral Strain-Specific Differential Alterations in Arabidopsis Developmental Patterns. Molecular Plant-Microbe Interactions®, 28(12), 1304-1315. doi:10.1094/mpmi-05-15-0111-r | es_ES |
dc.description.references | Sanjuan, R., Moya, A., & Elena, S. F. (2004). The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus. Proceedings of the National Academy of Sciences, 101(22), 8396-8401. doi:10.1073/pnas.0400146101 | es_ES |
dc.description.references | Schmidt, G. W., & Delaney, S. K. (2010). Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Molecular Genetics and Genomics, 283(3), 233-241. doi:10.1007/s00438-010-0511-1 | es_ES |
dc.description.references | Schoor, S., Farrow, S., Blaschke, H., Lee, S., Perry, G., von Schwartzenberg, K., … Moffatt, B. (2011). Adenosine Kinase Contributes to Cytokinin Interconversion in Arabidopsis. Plant Physiology, 157(2), 659-672. doi:10.1104/pp.111.181560 | es_ES |
dc.description.references | Tan, S.-L., Ganji, G., Paeper, B., Proll, S., & Katze, M. G. (2007). Systems biology and the host response to viral infection. Nature Biotechnology, 25(12), 1383-1389. doi:10.1038/nbt1207-1383 | es_ES |
dc.description.references | Tang, B. S. F., Chan, K., Cheng, V. C. C., Woo, P. C. Y., Lau, S. K. P., Lam, C. C. K., … Yuen, K. (2005). Comparative Host Gene Transcription by Microarray Analysis Early after Infection of the Huh7 Cell Line by Severe Acute Respiratory Syndrome Coronavirus and Human Coronavirus 229E. Journal of Virology, 79(10), 6180-6193. doi:10.1128/jvi.79.10.6180-6193.2005 | es_ES |
dc.description.references | Tian, T., Liu, Y., Yan, H., You, Q., Yi, X., Du, Z., … Su, Z. (2017). agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Research, 45(W1), W122-W129. doi:10.1093/nar/gkx382 | es_ES |
dc.description.references | Torres-Barceló, C., Martín, S., Daròs, J.-A., & Elena, S. F. (2008). From Hypo- to Hypersuppression: Effect of Amino Acid Substitutions on the RNA-Silencing Suppressor Activity of the Tobacco etch potyvirus HC-Pro. Genetics, 180(2), 1039-1049. doi:10.1534/genetics.108.091363 | es_ES |
dc.description.references | Vale, P. F., Choisy, M., Froissart, R., Sanjuán, R., & Gandon, S. (2012). THE DISTRIBUTION OF MUTATIONAL FITNESS EFFECTS OF PHAGE φX174 ON DIFFERENT HOSTS. Evolution, 66(11), 3495-3507. doi:10.1111/j.1558-5646.2012.01691.x | es_ES |
dc.description.references | Vijayapalani, P., Maeshima, M., Nagasaki-Takekuchi, N., & Miller, W. A. (2012). Interaction of the Trans-Frame Potyvirus Protein P3N-PIPO with Host Protein PCaP1 Facilitates Potyvirus Movement. PLoS Pathogens, 8(4), e1002639. doi:10.1371/journal.ppat.1002639 | es_ES |
dc.description.references | Visher, E., Whitefield, S. E., McCrone, J. T., Fitzsimmons, W., & Lauring, A. S. (2016). The Mutational Robustness of Influenza A Virus. PLOS Pathogens, 12(8), e1005856. doi:10.1371/journal.ppat.1005856 | es_ES |
dc.description.references | Viswanathan, K., & Früh, K. (2007). Viral proteomics: global evaluation of viruses and their interaction with the host. Expert Review of Proteomics, 4(6), 815-829. doi:10.1586/14789450.4.6.815 | es_ES |
dc.description.references | Wachter, A., & Hartmann, L. (2014). NMD: Nonsense-Mediated Defense. Cell Host & Microbe, 16(3), 273-275. doi:10.1016/j.chom.2014.08.015 | es_ES |
dc.description.references | Wargo, A. R., & Kurath, G. (2012). Viral fitness: definitions, measurement, and current insights. Current Opinion in Virology, 2(5), 538-545. doi:10.1016/j.coviro.2012.07.007 | es_ES |
dc.description.references | Westerhout, E. M. (2005). HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome. Nucleic Acids Research, 33(2), 796-804. doi:10.1093/nar/gki220 | es_ES |
dc.description.references | Willemsen, A., Zwart, M. P., Higueras, P., Sardanyés, J., & Elena, S. F. (2016). Predicting the Stability of Homologous Gene Duplications in a Plant RNA Virus. Genome Biology and Evolution, 8(9), 3065-3082. doi:10.1093/gbe/evw219 | es_ES |
dc.description.references | Xie, M., Ren, G., Zhang, C., & Yu, B. (2012). The DNA- and RNA-binding protein FACTOR of DNA METHYLATION 1 requires XH domain-mediated complex formation for its function in RNA-directed DNA methylation. The Plant Journal, 72(3), 491-500. doi:10.1111/j.1365-313x.2012.05092.x | es_ES |
dc.description.references | Zhan, G.-M., Li, R.-J., Hu, Z.-Y., Liu, J., Deng, L.-B., Lu, S.-Y., & Hua, W. (2014). Cosuppression of RBCS3B in Arabidopsis leads to severe photoinhibition caused by ROS accumulation. Plant Cell Reports, 33(7), 1091-1108. doi:10.1007/s00299-014-1597-4 | es_ES |