- -

Design and validation of a bio-mechanical bioreactor for cartilage tissue culture

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Design and validation of a bio-mechanical bioreactor for cartilage tissue culture

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Correia, V. es_ES
dc.contributor.author Panadero, J. A. es_ES
dc.contributor.author Ribeiro, C. es_ES
dc.contributor.author Sencadas, V. es_ES
dc.contributor.author Rocha, J. G. es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Lanceros-Méndez, S. es_ES
dc.date.accessioned 2020-06-23T03:46:43Z
dc.date.available 2020-06-23T03:46:43Z
dc.date.issued 2016-04 es_ES
dc.identifier.issn 1617-7959 es_ES
dc.identifier.uri http://hdl.handle.net/10251/146775
dc.description.abstract [EN] Specific tissues, such as cartilage, undergo mechanical solicitation under their normal performance in human body. In this sense, it seems necessary that proper tissue engineering strategies of these tissues should incorporate mechanical solicitations during cell culture, in order to properly evaluate the influence of the mechanical stimulus. This work reports on a user-friendly bioreactor suitable for applying controlled mechanical stimulation¿amplitude and frequency¿to three-dimensional scaffolds. Its design and main components are described, as well as its operation characteristics. The modular design allows easy cleaning and operating under laminar hood. Different protocols for the sterilization of the hermetic enclosure are tested and ensure lack of observable contaminations, complying with the requirements to be used for cell culture. The cell viability study was performed with KUM5 cells. es_ES
dc.description.sponsorship This work was funded by FEDER funds through the Programa Operacional Fatores de Competitividade COMPETE and by national funds arranged by FCT Fundação para a Ciência e a Tecnologia, project reference PEST-C/FIS/UI607/2014. The authors also thank funding from Matepro Optimizing Materials and Processes , ref. NORTE-07-0124-FEDER-000037 , co-funded by the Programa Operacional Regional do Norte (ON.2 O Novo Norte), under the Quadro de Referência Estratégico Nacional (QREN), through the Fundo Europeu de Desenvolvimento Regional (FEDER). JAP, VS, CR and VC thank the FCT for the SFRH/BD/64586/2009 and SFRH/BPD/63148/2009, SFRH/BPD/90870/2012, and SFRH/BPD/ 97739/2013 grants, respectively. This work was funded also by the Spanish Ministry of Economy and Copetitiveness (MINECO) through the project MAT2013-46467-C4-1-R (including the FEDER financial support). CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008 2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Biomechanics and Modeling in Mechanobiology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Bioreactor es_ES
dc.subject Mechanical stimulation es_ES
dc.subject Scaffold es_ES
dc.subject Cell culture es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Design and validation of a bio-mechanical bioreactor for cartilage tissue culture es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10237-015-0698-5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2013-46467-C4-1-R/ES/ESTIMULACION MECANICA LOCAL DE CELULAS MESENQUIMALES DE CARA A SU DIFERENCIACION OSTEOGENICA Y CONDROGENICA EN MEDICINA REGENERATIVA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F63148%2F2009/PT/ELECTROACTIVE MATERIALS BASED POROUS MEMBRANES AND SCAFFOLDS FOR BIOMEDICAL APPLICATIONS/
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F97739%2F2013/PT/DEVELOPMENT OF A PIEZORESISITIVE SENSOR MATRIX TO ASSESS THE FORCES ON THE LOWER LIMB SOCKET\STUMP INTERFACE/
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBD%2F64586%2F2009/PT/ACTIVE BIOMATERIALS FOR CELL CULTURE UNDER MECHANICAL STIMULUS APPLIED TO CARTILAGE TISSUE ENGINEERING/
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F90870%2F2012/PT/TAILORING ELECTRO-MECHANICALLY ACTIVE MATERIALS FOR TISSUE ENGINEERING APPLICATIONS/
dc.relation.projectID info:eu-repo/grantAgreement/FCT/PEST-C/FIS%2FUI607%2F2014/PT/
dc.relation.projectID info:eu-repo/grantAgreement/FEDER//FEDER/NORTE-07-0124-FEDER-000037/2013/EU/Matepro Optimizing Materials and Processes/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Correia, V.; Panadero, JA.; Ribeiro, C.; Sencadas, V.; Rocha, JG.; Gómez Ribelles, JL.; Lanceros-Méndez, S. (2016). Design and validation of a bio-mechanical bioreactor for cartilage tissue culture. Biomechanics and Modeling in Mechanobiology. 15(2):471-478. https://doi.org/10.1007/s10237-015-0698-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10237-015-0698-5 es_ES
dc.description.upvformatpinicio 471 es_ES
dc.description.upvformatpfin 478 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\325491 es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal es_ES
dc.description.references Angele P, Yoo JU, Smith C, Mansour J, Jepsen KJ, Nerlich M, Johnstone B (2003) Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J Orthop Res 21:451–457. doi: 10.1016/s0736-0266(02)00230-9 es_ES
dc.description.references Bian L, Zhai DY, Zhang EC, Mauck RL, Burdick JA (2012) Dynamic compressive loading enhances cartilage matrix synthesis and distribution and suppresses hypertrophy in hMSC-laden hyaluronic acid hydrogels. Tissue Eng A 18:715–724. doi: 10.1089/ten.TEA.2011.0455 es_ES
dc.description.references De Croos JN, Dhaliwal SS, Grynpas MD, Pilliar RM, Kandel RA (2006) Cyclic compressive mechanical stimulation induces sequential catabolic and anabolic gene changes in chondrocytes resulting in increased extracellular matrix accumulation. Matrix Biol 25:323–331. doi: 10.1016/j.matbio.2006.03.005 es_ES
dc.description.references Demarteau O, Wendt D, Braccini A, Jakob M, Schafer D, Heberer M, Martin I (2003) Dynamic compression of cartilage constructs engineered from expanded human articular chondrocytes. Biochem Biophys Res Commun 310:580–588. doi: 10.1016/j.bbrc.2003.09.099 es_ES
dc.description.references Goncalves A, Costa P, Rodrigues MT, Dias IR, Reis RL, Gomes ME (2011) Effect of flow perfusion conditions in the chondrogenic differentiation of bone marrow stromal cells cultured onto starch based biodegradable scaffolds. Acta Biomater 7:1644–1652. doi: 10.1016/j.actbio.2010.11.044 es_ES
dc.description.references Huang AH, Farrell MJ, Kim M, Mauck RL (2010a) Long-term dynamic loading improves the mechanical properties of chondrogenic mesenchymal stem cell-laden hydrogel. Eur Cells Mater 19:72–85 es_ES
dc.description.references Huang AH, Farrell MJ, Mauck RL (2010b) Mechanics and mechanobiology of mesenchymal stem cell-based engineered cartilage. J Biomech 43:128–136. doi: 10.1016/j.jbiomech.2009.09.018 es_ES
dc.description.references Kelly DJ, Jacobs CR (2010) The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Res C Embryo Today 90:75–85. doi: 10.1002/bdrc.20173 es_ES
dc.description.references Li Z, Yao SJ, Alini M, Stoddart MJ (2010) Chondrogenesis of human bone marrow mesenchymal stem cells in fibrin-polyurethane composites is modulated by frequency and amplitude of dynamic compression and shear stress. Tissue Eng A 16:575–584. doi: 10.1089/ten.TEA.2009.0262 es_ES
dc.description.references Lima EG, Bian L, Ng KW, Mauck RL, Byers BA, Tuan RS, Ateshian GA, Hung CT (2007) The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-beta3. Osteoarthr Cartil 15:1025–1033. doi: 10.1016/j.joca.2007.03.008 es_ES
dc.description.references Mahmoudifar N, Doran PM (2010) Chondrogenic differentiation of human adipose-derived stem cells in polyglycolic acid mesh scaffolds under dynamic culture conditions. Biomaterials 31:3858–3867. doi: 10.1016/j.biomaterials.2010.01.090 es_ES
dc.description.references Miyanishi K, Trindade MC, Lindsey DP, Beaupré GS, Carter DR, Goodman SB, Schurman DJ, Smith RL (2006) Effects of hydrostatic pressure and transforming growth factor-beta 3 on adult human mesenchymal stem cell chondrogenesis in vitro. Tissue Eng 12:1419–1428. doi: 10.1089/ten.2006.12.1419 es_ES
dc.description.references Nicodemus GD, Bryant SJ (2008) The role of hydrogel structure and dynamic loading on chondrocyte gene expression and matrix formation. J Biomech 41:1528–1536. doi: 10.1016/j.jbiomech.2008.02.034 es_ES
dc.description.references Obradovic B, Carrier RL, Vunjak-Novakovic G, Freed LE (1999) Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotechnol Bioeng 63:197–205. doi: 10.1002/(SICI)1097-0290(19990420)63:23.0.CO;2-2 es_ES
dc.description.references Panadero JA, Sencadas V, Silva SC, Ribeiro C, Correia V, Gama FM, Gomez Ribelles JL, Lanceros-Mendez S (2015) Mechanical fatigue performance of PCL-chondroprogenitor constructs after cell culture under bioreactor mechanical stimulus. J Biomed Mater Res B. doi: 10.1002/jbm.b.33386 es_ES
dc.description.references Panadero JA, Vikingsson L, Gomez Ribelles JL, Sencadas V, Lanceros-Mendez S (2013) Fatigue prediction in fibrin poly-epsilon-caprolactone macroporous scaffolds. J Mech Behav Biomed Mater 28:55–61. doi: 10.1016/j.jmbbm.2013.07.011 es_ES
dc.description.references Steinmeyer J, Knue S (1997) The proteoglycan metabolism of mature bovine articular cartilage explants superimposed to continuously applied cyclic mechanical loading. Biochem Biophys Res Commun 240:216–221. doi: 10.1006/bbrc.1997.7641 es_ES
dc.description.references Sugiki T, Uyama T, Toyoda M, Morioka H, Kume S, Miyado K, Matsumoto K, Saito H, Tsumaki N, Takahashi Y, Toyama Y, Umezawa A (2007) Hyaline cartilage formation and enchondral ossification modeled with KUM5 and OP9 chondroblasts. J Cell Biochem 100:1240–1254. doi: 10.1002/jcb.21125 es_ES
dc.description.references Thorpe SD, Buckley CT, Steward AJ, Kelly DJ (2012) The external mechanical environment can override the influence of local substrate in determining stem cell fate. J Biomech 45:2483–2492. doi: 10.1016/j.jbiomech.2012.07.024 es_ES
dc.description.references Thorpe SD, Buckley CT, Vinardell T, O’Brien FJ, Campbell VA, Kelly DJ (2008) Dynamic compression can inhibit chondrogenesis of mesenchymal stem cells. Biochem Biophys Res Commun 377:458–462. doi: 10.1016/j.bbrc.2008.09.154 es_ES
dc.description.references Vinardell T, Rolfe RA, Buckley CT, Meyer EG, Ahearne M, Murphy P, Kelly DJ (2012) Hydrostatic pressure acts to stabilise a chondrogenic phenotype in porcine joint tissue derived stem cells. Eur Cells Mater 23:121–134 es_ES
dc.description.references Wong M, Carter DR (2003) Articular cartilage functional histomorphology and mechanobiology: a research perspective. Bone 33:1–13. doi: 10.1016/S8756-3282(03)00083-8 es_ES
dc.description.references Wong M, Wuethrich P, Buschmann MD, Eggli P, Hunziker E (1997) Chondrocyte biosynthesis correlates with local tissue strain in statically compressed adult articular cartilage. J Orthop Res 15:189–196. doi: 10.1002/jor.1100150206 es_ES
dc.description.references Xie L, Zhang N, Marsano A, Vunjak-Novakovic G, Zhang Y, Lopez MJ (2013) In vitro mesenchymal trilineage differentiation and extracellular matrix production by adipose and bone marrow derived adult equine multipotent stromal cells on a collagen scaffold. Stem Cell Rev 9:858–872. doi: 10.1007/s12015-013-9456-1 es_ES
dc.description.references Zeiter S, Lezuo P, Ito K (2009) Effect of TGF beta1, BMP-2 and hydraulic pressure on chondrogenic differentiation of bovine bone marrow mesenchymal stromal cells. Biorheology 46:45–55. doi: 10.3233/bir-2009-0520 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem