Mostrar el registro sencillo del ítem
dc.contributor.author | Li, Xiaoping | es_ES |
dc.contributor.author | Qian, L. | es_ES |
dc.contributor.author | Ruiz García, Rubén | es_ES |
dc.date.accessioned | 2020-06-24T03:31:06Z | |
dc.date.available | 2020-06-24T03:31:06Z | |
dc.date.issued | 2018-03 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/146874 | |
dc.description.abstract | [EN] Allocating service capacities in cloud computing is based on the assumption that they are unlimited and can be used at any time. However, available service capacities change with workload and cannot satisfy users' requests at any time from the cloud provider's perspective because cloud services can be shared by multiple tasks. Cloud service providers provide available time slots for new user's requests based on available capacities. In this paper, we consider workflow scheduling with deadline and time slot availability in cloud computing. An iterated heuristic framework is presented for the problem under study which mainly consists of initial solution construction, improvement, and perturbation. Three initial solution construction strategies, two greedy-and fair-based improvement strategies and a perturbation strategy are proposed. Different strategies in the three phases result in several heuristics. Experimental results show that different initial solution and improvement strategies have different effects on solution qualities. | es_ES |
dc.description.sponsorship | This work has been supported by the National Natural Science Foundation of China (Nos. 61572127, 61272377) and the Key Research & Development Program in Jiangsu Province (No. BE2015728). Ruben Ruiz is partially supported by the Spanish Ministry of Economy and Competitiveness, under the project "RESULT - Realistic Extended Scheduling Using Light Techniques" (No. DPI2012-36243-C02-01) partially financed with FEDER funds. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Institute of Electrical and Electronics Engineers | es_ES |
dc.relation.ispartof | IEEE Transactions on Services Computing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Cloud computing | es_ES |
dc.subject | Scheduling | es_ES |
dc.subject | Time slots | es_ES |
dc.subject | Workflow | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Cloud Workflow Scheduling with Deadlines and Time Slot Availability | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1109/TSC.2016.2518187 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//61572127/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//61272377/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Jiangsu Province Key Research and Development//BE2015728/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2012-36243-C02-01/ES/REALISTIC EXTENDED SCHEDULING USING LIGHT TECHNIQUES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Li, X.; Qian, L.; Ruiz García, R. (2018). Cloud Workflow Scheduling with Deadlines and Time Slot Availability. IEEE Transactions on Services Computing. 11(2):329-340. https://doi.org/10.1109/TSC.2016.2518187 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/TSC.2016.2518187 | es_ES |
dc.description.upvformatpinicio | 329 | es_ES |
dc.description.upvformatpfin | 340 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1939-1374 | es_ES |
dc.relation.pasarela | S\383630 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | National Natural Science Foundation of China | es_ES |
dc.contributor.funder | Jiangsu Province Key Research and Development, China | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |