Mostrar el registro sencillo del ítem
dc.contributor.author | Escorihuela-Roca, Sara | es_ES |
dc.contributor.author | Valero, Lucía | es_ES |
dc.contributor.author | Tena, Alberto | es_ES |
dc.contributor.author | Shishatskiy, Sergey | es_ES |
dc.contributor.author | Escolástico Rozalén, Sonia | es_ES |
dc.contributor.author | Brinkmann, Torsten | es_ES |
dc.contributor.author | Serra Alfaro, José Manuel | es_ES |
dc.date.accessioned | 2020-06-24T03:31:21Z | |
dc.date.available | 2020-06-24T03:31:21Z | |
dc.date.issued | 2018-12 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/146876 | |
dc.description.abstract | [EN] Three polyimides and six inorganic fillers in a form of nanometer-sized particles were studied as thick film solution cast mixed matrix membranes (MMMs) for the transport of CO2, CH4, and H2O. Gas transport properties and electron microscopy images indicate good polymer-filler compatibility for all membranes. The only filler type thatdemonstrated good distribution throughout the membrane thickness at 10 wt.% loading was BaCe0.2Zr0.7Y0.1O3 (BCZY). The influence of this filler on MMM gas transport properties was studied in detail for 6FDA-6FpDA in a filler content range from one to 20 wt.% and for Matrimid((R)) and P84((R)) at 10 wt.% loading. The most promising result was obtained for Matrimid((R))10 wt.% BCZY MMM, which showed improvement in CO2 and H2O permeabilities accompanied by increased CO2/CH4 selectivity and high water selective membrane at elevated temperatures without H2O/permanent gas selectivity loss. | es_ES |
dc.description.sponsorship | This work was financially supported by the Spanish Government (SEV-2016-0683, SVP-2014-068356, Project ENE2014-57651-R and IJCI-2016-28330 grants) and GeneralitatValenciana (PROMETEO/2018/006 grant) and Helmholtz-Zentrum Geesthacht (HZG) through the technology transfer project program and by the Helmholtz Association of German Research Centers through the Helmholtz Portfolio MEMBRAIN. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Membranes | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Mixed matrix membranes | es_ES |
dc.subject | Carbon dioxide | es_ES |
dc.subject | Water vapor permeability | es_ES |
dc.subject | Polyimides | es_ES |
dc.subject | Inorganic fillers | es_ES |
dc.subject | Gas separation membranes | es_ES |
dc.subject | Water transport | es_ES |
dc.title | Study of the Effect of Inorganic Particles on the Gas Transport Properties of Glassy Polyimides for Selective CO2 and H2O Separation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/membranes8040128 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SVP-2014-068356/ES/SVP-2014-068356/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//IJCI-2016-28330/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ENE2014-57651-R/ES/ALMACENAMIENTO DE ENERGIA VIA REDUCCION DE CO2 A COMBUSTIBLES Y PRODUCTOS QUIMICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F006/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Escorihuela-Roca, S.; Valero, L.; Tena, A.; Shishatskiy, S.; Escolástico Rozalén, S.; Brinkmann, T.; Serra Alfaro, JM. (2018). Study of the Effect of Inorganic Particles on the Gas Transport Properties of Glassy Polyimides for Selective CO2 and H2O Separation. Membranes. 8(4). https://doi.org/10.3390/membranes8040128 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/membranes8040128 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 2077-0375 | es_ES |
dc.identifier.pmcid | PMC6316831 | es_ES |
dc.relation.pasarela | S\383220 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Helmholtz Association of German Research Centers | es_ES |
dc.description.references | KULPRATHIPANJA, S. (2003). Mixed Matrix Membrane Development. Annals of the New York Academy of Sciences, 984(1), 361-369. doi:10.1111/j.1749-6632.2003.tb06012.x | es_ES |
dc.description.references | Robeson, L. M. (2008). The upper bound revisited. Journal of Membrane Science, 320(1-2), 390-400. doi:10.1016/j.memsci.2008.04.030 | es_ES |
dc.description.references | Baker, R. W. (2010). Research needs in the membrane separation industry: Looking back, looking forward. Journal of Membrane Science, 362(1-2), 134-136. doi:10.1016/j.memsci.2010.06.028 | es_ES |
dc.description.references | Stünkel, S., Drescher, A., Wind, J., Brinkmann, T., Repke, J.-U., & Wozny, G. (2011). Carbon dioxide capture for the oxidative coupling of methane process – A case study in mini-plant scale. Chemical Engineering Research and Design, 89(8), 1261-1270. doi:10.1016/j.cherd.2011.02.024 | es_ES |
dc.description.references | Cheng, Y., Wang, Z., & Zhao, D. (2018). Mixed Matrix Membranes for Natural Gas Upgrading: Current Status and Opportunities. Industrial & Engineering Chemistry Research, 57(12), 4139-4169. doi:10.1021/acs.iecr.7b04796 | es_ES |
dc.description.references | Koros, W. J., & Zhang, C. (2017). Materials for next-generation molecularly selective synthetic membranes. Nature Materials, 16(3), 289-297. doi:10.1038/nmat4805 | es_ES |
dc.description.references | Li, Y., He, G., Wang, S., Yu, S., Pan, F., Wu, H., & Jiang, Z. (2013). Recent advances in the fabrication of advanced composite membranes. Journal of Materials Chemistry A, 1(35), 10058. doi:10.1039/c3ta01652h | es_ES |
dc.description.references | Liu, Y., Liu, G., Zhang, C., Qiu, W., Yi, S., Chernikova, V., … Koros, W. (2018). Enhanced CO2 /CH4 Separation Performance of a Mixed Matrix Membrane Based on Tailored MOF-Polymer Formulations. Advanced Science, 5(9), 1800982. doi:10.1002/advs.201800982 | es_ES |
dc.description.references | Bae, T.-H., Liu, J., Lee, J. S., Koros, W. J., Jones, C. W., & Nair, S. (2009). Facile High-Yield Solvothermal Deposition of Inorganic Nanostructures on Zeolite Crystals for Mixed Matrix Membrane Fabrication. Journal of the American Chemical Society, 131(41), 14662-14663. doi:10.1021/ja907435c | es_ES |
dc.description.references | Zornoza, B., Téllez, C., & Coronas, J. (2011). Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation. Journal of Membrane Science, 368(1-2), 100-109. doi:10.1016/j.memsci.2010.11.027 | es_ES |
dc.description.references | Anson, M., Marchese, J., Garis, E., Ochoa, N., & Pagliero, C. (2004). ABS copolymer-activated carbon mixed matrix membranes for CO2/CH4 separation. Journal of Membrane Science, 243(1-2), 19-28. doi:10.1016/j.memsci.2004.05.008 | es_ES |
dc.description.references | Kim, S., Chen, L., Johnson, J. K., & Marand, E. (2007). Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: Theory and experiment. Journal of Membrane Science, 294(1-2), 147-158. doi:10.1016/j.memsci.2007.02.028 | es_ES |
dc.description.references | Adams, R., Carson, C., Ward, J., Tannenbaum, R., & Koros, W. (2010). Metal organic framework mixed matrix membranes for gas separations. Microporous and Mesoporous Materials, 131(1-3), 13-20. doi:10.1016/j.micromeso.2009.11.035 | es_ES |
dc.description.references | McKeown, N. B. (2018). A perfect match. Nature Materials, 17(3), 216-217. doi:10.1038/s41563-018-0029-1 | es_ES |
dc.description.references | Dechnik, J., Sumby, C. J., & Janiak, C. (2017). Enhancing Mixed-Matrix Membrane Performance with Metal–Organic Framework Additives. Crystal Growth & Design, 17(8), 4467-4488. doi:10.1021/acs.cgd.7b00595 | es_ES |
dc.description.references | Bastani, D., Esmaeili, N., & Asadollahi, M. (2013). Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review. Journal of Industrial and Engineering Chemistry, 19(2), 375-393. doi:10.1016/j.jiec.2012.09.019 | es_ES |
dc.description.references | Dechnik, J., Gascon, J., Doonan, C. J., Janiak, C., & Sumby, C. J. (2017). Mixed-Matrix Membranes. Angewandte Chemie International Edition, 56(32), 9292-9310. doi:10.1002/anie.201701109 | es_ES |
dc.description.references | Yang, Y., Chuah, C. Y., Nie, L., & Bae, T.-H. (2019). Enhancing the mechanical strength and CO2/CH4 separation performance of polymeric membranes by incorporating amine-appended porous polymers. Journal of Membrane Science, 569, 149-156. doi:10.1016/j.memsci.2018.10.018 | es_ES |
dc.description.references | Mikkelsen, M., Jørgensen, M., & Krebs, F. C. (2010). The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci., 3(1), 43-81. doi:10.1039/b912904a | es_ES |
dc.description.references | Miltner, M., Makaruk, A., & Harasek, M. (2017). Review on available biogas upgrading technologies and innovations towards advanced solutions. Journal of Cleaner Production, 161, 1329-1337. doi:10.1016/j.jclepro.2017.06.045 | es_ES |
dc.description.references | Ullah Khan, I., Hafiz Dzarfan Othman, M., Hashim, H., Matsuura, T., Ismail, A. F., Rezaei-DashtArzhandi, M., & Wan Azelee, I. (2017). Biogas as a renewable energy fuel – A review of biogas upgrading, utilisation and storage. Energy Conversion and Management, 150, 277-294. doi:10.1016/j.enconman.2017.08.035 | es_ES |
dc.description.references | Montañez-Hernández, L. E., Hernández-De Lira, I. O., Rafael-Galindo, G., de Lourdes Froto Madariaga, M., & Balagurusamy, N. (2018). Sustainable Production of Biogas from Renewable Sources: Global Overview, Scale Up Opportunities and Potential Market Trends. Sustainable Biotechnology- Enzymatic Resources of Renewable Energy, 325-354. doi:10.1007/978-3-319-95480-6_13 | es_ES |
dc.description.references | Baker, R. W., & Lokhandwala, K. (2008). Natural Gas Processing with Membranes: An Overview. Industrial & Engineering Chemistry Research, 47(7), 2109-2121. doi:10.1021/ie071083w | es_ES |
dc.description.references | Zhang, Y., Sunarso, J., Liu, S., & Wang, R. (2013). Current status and development of membranes for CO2/CH4 separation: A review. International Journal of Greenhouse Gas Control, 12, 84-107. doi:10.1016/j.ijggc.2012.10.009 | es_ES |
dc.description.references | Rezakazemi, M., Ebadi Amooghin, A., Montazer-Rahmati, M. M., Ismail, A. F., & Matsuura, T. (2014). State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Progress in Polymer Science, 39(5), 817-861. doi:10.1016/j.progpolymsci.2014.01.003 | es_ES |
dc.description.references | Angelidaki, I., Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., & Kougias, P. G. (2018). Biogas upgrading and utilization: Current status and perspectives. Biotechnology Advances, 36(2), 452-466. doi:10.1016/j.biotechadv.2018.01.011 | es_ES |
dc.description.references | Jeon, Y.-W., & Lee, D.-H. (2015). Gas Membranes for CO2/CH4 (Biogas) Separation: A Review. Environmental Engineering Science, 32(2), 71-85. doi:10.1089/ees.2014.0413 | es_ES |
dc.description.references | Murali, R. S., Sankarshana, T., & Sridhar, S. (2013). Air Separation by Polymer-based Membrane Technology. Separation & Purification Reviews, 42(2), 130-186. doi:10.1080/15422119.2012.686000 | es_ES |
dc.description.references | Kanehashi, S., Chen, G. Q., Ciddor, L., Chaffee, A., & Kentish, S. E. (2015). The impact of water vapor on CO2 separation performance of mixed matrix membranes. Journal of Membrane Science, 492, 471-477. doi:10.1016/j.memsci.2015.05.046 | es_ES |
dc.description.references | Kreuer, K. D. (2003). Proton-Conducting Oxides. Annual Review of Materials Research, 33(1), 333-359. doi:10.1146/annurev.matsci.33.022802.091825 | es_ES |
dc.description.references | HAUGSRUD, R. (2007). Defects and transport properties in Ln6WO12 (Ln=La, Nd, Gd, Er). Solid State Ionics, 178(7-10), 555-560. doi:10.1016/j.ssi.2007.01.004 | es_ES |
dc.description.references | Kim, S., Anselmi-Tamburini, U., Park, H. J., Martin, M., & Munir, Z. A. (2008). Unprecedented Room-Temperature Electrical Power Generation Using Nanoscale Fluorite-Structured Oxide Electrolytes. Advanced Materials, 20(3), 556-559. doi:10.1002/adma.200700715 | es_ES |
dc.description.references | Fernández-Barquín, A., Casado-Coterillo, C., Palomino, M., Valencia, S., & Irabien, A. (2015). LTA/Poly(1-trimethylsilyl-1-propyne) Mixed-Matrix Membranes for High-Temperature CO2/N2Separation. Chemical Engineering & Technology, 38(4), 658-666. doi:10.1002/ceat.201400641 | es_ES |
dc.description.references | Tena, A., Shishatskiy, S., Meis, D., Wind, J., Filiz, V., & Abetz, V. (2017). Influence of the Composition and Imidization Route on the Chain Packing and Gas Separation Properties of Fluorinated Copolyimides. Macromolecules, 50(15), 5839-5849. doi:10.1021/acs.macromol.7b01051 | es_ES |
dc.description.references | Escorihuela, S., Tena, A., Shishatskiy, S., Escolástico, S., Brinkmann, T., Serra, J., & Abetz, V. (2018). Gas Separation Properties of Polyimide Thin Films on Ceramic Supports for High Temperature Applications. Membranes, 8(1), 16. doi:10.3390/membranes8010016 | es_ES |
dc.description.references | Corma, A., Fornés, V., Guil, J. ., Pergher, S., Maesen, T. L. ., & Buglass, J. . (2000). Preparation, characterisation and catalytic activity of ITQ-2, a delaminated zeolite. Microporous and Mesoporous Materials, 38(2-3), 301-309. doi:10.1016/s1387-1811(00)00149-9 | es_ES |
dc.description.references | Itoh, T., Mori, M., Inukai, M., Nitani, H., Yamamoto, T., Miyanaga, T., … Idemoto, Y. (2015). Effect of Annealing on Crystal and Local Structures of Doped Zirconia Using Experimental and Computational Methods. The Journal of Physical Chemistry C, 119(16), 8447-8458. doi:10.1021/jp5117118 | es_ES |
dc.description.references | Vigneron, F., Sougi, M., Meriel, P., Herr, A., & Meyer, A. (1980). Etude par diffraction de neutrons des structures magnétiques de TbBe 13 à basse température. Journal de Physique, 41(2), 123-133. doi:10.1051/jphys:01980004102012300 | es_ES |
dc.description.references | Scherb, T., Kimber, S. A. J., Stephan, C., Henry, P. F., Schumacher, G., Escolástico, S., … Banhart, J. (2016). Nanoscale order in the frustrated mixed conductor La5.6WO12−δ. Journal of Applied Crystallography, 49(3), 997-1008. doi:10.1107/s1600576716006415 | es_ES |
dc.description.references | Han, D., Kishida, K., Shinoda, K., Inui, H., & Uda, T. (2013). A comprehensive understanding of structure and site occupancy of Y in Y-doped BaZrO3. Journal of Materials Chemistry A, 1(9), 3027. doi:10.1039/c2ta00675h | es_ES |
dc.description.references | Morejudo, S. H., Zanón, R., Escolástico, S., Yuste-Tirados, I., Malerød-Fjeld, H., Vestre, P. K., … Kjølseth, C. (2016). Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science, 353(6299), 563-566. doi:10.1126/science.aag0274 | es_ES |
dc.description.references | IZA Structure Comissionhttp://www.iza-structure.org/ | es_ES |
dc.description.references | Lillepärg, J., Georgopanos, P., Emmler, T., & Shishatskiy, S. (2016). Effect of the reactive amino and glycidyl ether terminated polyethylene oxide additives on the gas transport properties of Pebax® bulk and thin film composite membranes. RSC Advances, 6(14), 11763-11772. doi:10.1039/c5ra22026b | es_ES |
dc.description.references | Zhang, C., Dai, Y., Johnson, J. R., Karvan, O., & Koros, W. J. (2012). High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations. Journal of Membrane Science, 389, 34-42. doi:10.1016/j.memsci.2011.10.003 | es_ES |
dc.description.references | Fernández-Barquín, A., Casado-Coterillo, C., Palomino, M., Valencia, S., & Irabien, A. (2016). Permselectivity improvement in membranes for CO2/N2 separation. Separation and Purification Technology, 157, 102-111. doi:10.1016/j.seppur.2015.11.032 | es_ES |
dc.description.references | Sabetghadam, A., Seoane, B., Keskin, D., Duim, N., Rodenas, T., Shahid, S., … Gascon, J. (2016). Metal Organic Framework Crystals in Mixed-Matrix Membranes: Impact of the Filler Morphology on the Gas Separation Performance. Advanced Functional Materials, 26(18), 3154-3163. doi:10.1002/adfm.201505352 | es_ES |
dc.description.references | Khayet, M., & García-Payo, M. C. (2009). X-Ray diffraction study of polyethersulfone polymer, flat-sheet and hollow fibers prepared from the same under different gas-gaps. Desalination, 245(1-3), 494-500. doi:10.1016/j.desal.2009.02.013 | es_ES |
dc.description.references | RECIO, R., PALACIO, L., PRADANOS, P., HERNANDEZ, A., LOZANO, A., MARCOS, A., … DEABAJO, J. (2007). Gas separation of 6FDA–6FpDA membranesEffect of the solvent on polymer surfaces and permselectivity. Journal of Membrane Science, 293(1-2), 22-28. doi:10.1016/j.memsci.2007.01.022 | es_ES |
dc.description.references | Calle, M., Lozano, A. E., de Abajo, J., de la Campa, J. G., & Álvarez, C. (2010). Design of gas separation membranes derived of rigid aromatic polyimides. 1. Polymers from diamines containing di-tert-butyl side groups. Journal of Membrane Science, 365(1-2), 145-153. doi:10.1016/j.memsci.2010.08.051 | es_ES |
dc.description.references | Liu, Y., Huang, J., Tan, J., Zeng, Y., Ding, Q., Zhang, H., … Xiang, X. (2017). Barrier and thermal properties of polyimide derived from a diamine monomer containing a rigid planar moiety. Polymer International, 66(8), 1214-1222. doi:10.1002/pi.5381 | es_ES |
dc.description.references | Yampolskii, Y., Shishatskii, S., Alentiev, A., & Loza, K. (1998). Correlations with and prediction of activation energies of gas permeation and diffusion in glassy polymers. Journal of Membrane Science, 148(1), 59-69. doi:10.1016/s0376-7388(98)00130-6 | es_ES |
dc.description.references | Jamil, A., Ching, O. P., & Shariff, A. B. M. (2016). Current Status and Future Prospect of Polymer-Layered Silicate Mixed-Matrix Membranes for CO2 /CH4 Separation. Chemical Engineering & Technology, 39(8), 1393-1405. doi:10.1002/ceat.201500395 | es_ES |
dc.description.references | Bae, T.-H., & Long, J. R. (2013). CO2/N2 separations with mixed-matrix membranes containing Mg2(dobdc) nanocrystals. Energy & Environmental Science, 6(12), 3565. doi:10.1039/c3ee42394h | es_ES |
dc.description.references | Castarlenas, S., Téllez, C., & Coronas, J. (2017). Gas separation with mixed matrix membranes obtained from MOF UiO-66-graphite oxide hybrids. Journal of Membrane Science, 526, 205-211. doi:10.1016/j.memsci.2016.12.041 | es_ES |
dc.description.references | Galve, A., Sieffert, D., Vispe, E., Téllez, C., Coronas, J., & Staudt, C. (2011). Copolyimide mixed matrix membranes with oriented microporous titanosilicate JDF-L1 sheet particles. Journal of Membrane Science, 370(1-2), 131-140. doi:10.1016/j.memsci.2011.01.011 | es_ES |
dc.description.references | Vinoba, M., Bhagiyalakshmi, M., Alqaheem, Y., Alomair, A. A., Pérez, A., & Rana, M. S. (2017). Recent progress of fillers in mixed matrix membranes for CO 2 separation: A review. Separation and Purification Technology, 188, 431-450. doi:10.1016/j.seppur.2017.07.051 | es_ES |