- -

Study of the Effect of Inorganic Particles on the Gas Transport Properties of Glassy Polyimides for Selective CO2 and H2O Separation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Study of the Effect of Inorganic Particles on the Gas Transport Properties of Glassy Polyimides for Selective CO2 and H2O Separation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Escorihuela-Roca, Sara es_ES
dc.contributor.author Valero, Lucía es_ES
dc.contributor.author Tena, Alberto es_ES
dc.contributor.author Shishatskiy, Sergey es_ES
dc.contributor.author Escolástico Rozalén, Sonia es_ES
dc.contributor.author Brinkmann, Torsten es_ES
dc.contributor.author Serra Alfaro, José Manuel es_ES
dc.date.accessioned 2020-06-24T03:31:21Z
dc.date.available 2020-06-24T03:31:21Z
dc.date.issued 2018-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/146876
dc.description.abstract [EN] Three polyimides and six inorganic fillers in a form of nanometer-sized particles were studied as thick film solution cast mixed matrix membranes (MMMs) for the transport of CO2, CH4, and H2O. Gas transport properties and electron microscopy images indicate good polymer-filler compatibility for all membranes. The only filler type thatdemonstrated good distribution throughout the membrane thickness at 10 wt.% loading was BaCe0.2Zr0.7Y0.1O3 (BCZY). The influence of this filler on MMM gas transport properties was studied in detail for 6FDA-6FpDA in a filler content range from one to 20 wt.% and for Matrimid((R)) and P84((R)) at 10 wt.% loading. The most promising result was obtained for Matrimid((R))10 wt.% BCZY MMM, which showed improvement in CO2 and H2O permeabilities accompanied by increased CO2/CH4 selectivity and high water selective membrane at elevated temperatures without H2O/permanent gas selectivity loss. es_ES
dc.description.sponsorship This work was financially supported by the Spanish Government (SEV-2016-0683, SVP-2014-068356, Project ENE2014-57651-R and IJCI-2016-28330 grants) and GeneralitatValenciana (PROMETEO/2018/006 grant) and Helmholtz-Zentrum Geesthacht (HZG) through the technology transfer project program and by the Helmholtz Association of German Research Centers through the Helmholtz Portfolio MEMBRAIN. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Membranes es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Mixed matrix membranes es_ES
dc.subject Carbon dioxide es_ES
dc.subject Water vapor permeability es_ES
dc.subject Polyimides es_ES
dc.subject Inorganic fillers es_ES
dc.subject Gas separation membranes es_ES
dc.subject Water transport es_ES
dc.title Study of the Effect of Inorganic Particles on the Gas Transport Properties of Glassy Polyimides for Selective CO2 and H2O Separation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/membranes8040128 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SVP-2014-068356/ES/SVP-2014-068356/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IJCI-2016-28330/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2014-57651-R/ES/ALMACENAMIENTO DE ENERGIA VIA REDUCCION DE CO2 A COMBUSTIBLES Y PRODUCTOS QUIMICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F006/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Escorihuela-Roca, S.; Valero, L.; Tena, A.; Shishatskiy, S.; Escolástico Rozalén, S.; Brinkmann, T.; Serra Alfaro, JM. (2018). Study of the Effect of Inorganic Particles on the Gas Transport Properties of Glassy Polyimides for Selective CO2 and H2O Separation. Membranes. 8(4). https://doi.org/10.3390/membranes8040128 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/membranes8040128 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2077-0375 es_ES
dc.identifier.pmcid PMC6316831 es_ES
dc.relation.pasarela S\383220 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Helmholtz Association of German Research Centers es_ES
dc.description.references KULPRATHIPANJA, S. (2003). Mixed Matrix Membrane Development. Annals of the New York Academy of Sciences, 984(1), 361-369. doi:10.1111/j.1749-6632.2003.tb06012.x es_ES
dc.description.references Robeson, L. M. (2008). The upper bound revisited. Journal of Membrane Science, 320(1-2), 390-400. doi:10.1016/j.memsci.2008.04.030 es_ES
dc.description.references Baker, R. W. (2010). Research needs in the membrane separation industry: Looking back, looking forward. Journal of Membrane Science, 362(1-2), 134-136. doi:10.1016/j.memsci.2010.06.028 es_ES
dc.description.references Stünkel, S., Drescher, A., Wind, J., Brinkmann, T., Repke, J.-U., & Wozny, G. (2011). Carbon dioxide capture for the oxidative coupling of methane process – A case study in mini-plant scale. Chemical Engineering Research and Design, 89(8), 1261-1270. doi:10.1016/j.cherd.2011.02.024 es_ES
dc.description.references Cheng, Y., Wang, Z., & Zhao, D. (2018). Mixed Matrix Membranes for Natural Gas Upgrading: Current Status and Opportunities. Industrial & Engineering Chemistry Research, 57(12), 4139-4169. doi:10.1021/acs.iecr.7b04796 es_ES
dc.description.references Koros, W. J., & Zhang, C. (2017). Materials for next-generation molecularly selective synthetic membranes. Nature Materials, 16(3), 289-297. doi:10.1038/nmat4805 es_ES
dc.description.references Li, Y., He, G., Wang, S., Yu, S., Pan, F., Wu, H., & Jiang, Z. (2013). Recent advances in the fabrication of advanced composite membranes. Journal of Materials Chemistry A, 1(35), 10058. doi:10.1039/c3ta01652h es_ES
dc.description.references Liu, Y., Liu, G., Zhang, C., Qiu, W., Yi, S., Chernikova, V., … Koros, W. (2018). Enhanced CO2 /CH4 Separation Performance of a Mixed Matrix Membrane Based on Tailored MOF-Polymer Formulations. Advanced Science, 5(9), 1800982. doi:10.1002/advs.201800982 es_ES
dc.description.references Bae, T.-H., Liu, J., Lee, J. S., Koros, W. J., Jones, C. W., & Nair, S. (2009). Facile High-Yield Solvothermal Deposition of Inorganic Nanostructures on Zeolite Crystals for Mixed Matrix Membrane Fabrication. Journal of the American Chemical Society, 131(41), 14662-14663. doi:10.1021/ja907435c es_ES
dc.description.references Zornoza, B., Téllez, C., & Coronas, J. (2011). Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation. Journal of Membrane Science, 368(1-2), 100-109. doi:10.1016/j.memsci.2010.11.027 es_ES
dc.description.references Anson, M., Marchese, J., Garis, E., Ochoa, N., & Pagliero, C. (2004). ABS copolymer-activated carbon mixed matrix membranes for CO2/CH4 separation. Journal of Membrane Science, 243(1-2), 19-28. doi:10.1016/j.memsci.2004.05.008 es_ES
dc.description.references Kim, S., Chen, L., Johnson, J. K., & Marand, E. (2007). Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: Theory and experiment. Journal of Membrane Science, 294(1-2), 147-158. doi:10.1016/j.memsci.2007.02.028 es_ES
dc.description.references Adams, R., Carson, C., Ward, J., Tannenbaum, R., & Koros, W. (2010). Metal organic framework mixed matrix membranes for gas separations. Microporous and Mesoporous Materials, 131(1-3), 13-20. doi:10.1016/j.micromeso.2009.11.035 es_ES
dc.description.references McKeown, N. B. (2018). A perfect match. Nature Materials, 17(3), 216-217. doi:10.1038/s41563-018-0029-1 es_ES
dc.description.references Dechnik, J., Sumby, C. J., & Janiak, C. (2017). Enhancing Mixed-Matrix Membrane Performance with Metal–Organic Framework Additives. Crystal Growth & Design, 17(8), 4467-4488. doi:10.1021/acs.cgd.7b00595 es_ES
dc.description.references Bastani, D., Esmaeili, N., & Asadollahi, M. (2013). Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review. Journal of Industrial and Engineering Chemistry, 19(2), 375-393. doi:10.1016/j.jiec.2012.09.019 es_ES
dc.description.references Dechnik, J., Gascon, J., Doonan, C. J., Janiak, C., & Sumby, C. J. (2017). Mixed-Matrix Membranes. Angewandte Chemie International Edition, 56(32), 9292-9310. doi:10.1002/anie.201701109 es_ES
dc.description.references Yang, Y., Chuah, C. Y., Nie, L., & Bae, T.-H. (2019). Enhancing the mechanical strength and CO2/CH4 separation performance of polymeric membranes by incorporating amine-appended porous polymers. Journal of Membrane Science, 569, 149-156. doi:10.1016/j.memsci.2018.10.018 es_ES
dc.description.references Mikkelsen, M., Jørgensen, M., & Krebs, F. C. (2010). The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci., 3(1), 43-81. doi:10.1039/b912904a es_ES
dc.description.references Miltner, M., Makaruk, A., & Harasek, M. (2017). Review on available biogas upgrading technologies and innovations towards advanced solutions. Journal of Cleaner Production, 161, 1329-1337. doi:10.1016/j.jclepro.2017.06.045 es_ES
dc.description.references Ullah Khan, I., Hafiz Dzarfan Othman, M., Hashim, H., Matsuura, T., Ismail, A. F., Rezaei-DashtArzhandi, M., & Wan Azelee, I. (2017). Biogas as a renewable energy fuel – A review of biogas upgrading, utilisation and storage. Energy Conversion and Management, 150, 277-294. doi:10.1016/j.enconman.2017.08.035 es_ES
dc.description.references Montañez-Hernández, L. E., Hernández-De Lira, I. O., Rafael-Galindo, G., de Lourdes Froto Madariaga, M., & Balagurusamy, N. (2018). Sustainable Production of Biogas from Renewable Sources: Global Overview, Scale Up Opportunities and Potential Market Trends. Sustainable Biotechnology- Enzymatic Resources of Renewable Energy, 325-354. doi:10.1007/978-3-319-95480-6_13 es_ES
dc.description.references Baker, R. W., & Lokhandwala, K. (2008). Natural Gas Processing with Membranes:  An Overview. Industrial & Engineering Chemistry Research, 47(7), 2109-2121. doi:10.1021/ie071083w es_ES
dc.description.references Zhang, Y., Sunarso, J., Liu, S., & Wang, R. (2013). Current status and development of membranes for CO2/CH4 separation: A review. International Journal of Greenhouse Gas Control, 12, 84-107. doi:10.1016/j.ijggc.2012.10.009 es_ES
dc.description.references Rezakazemi, M., Ebadi Amooghin, A., Montazer-Rahmati, M. M., Ismail, A. F., & Matsuura, T. (2014). State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Progress in Polymer Science, 39(5), 817-861. doi:10.1016/j.progpolymsci.2014.01.003 es_ES
dc.description.references Angelidaki, I., Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., & Kougias, P. G. (2018). Biogas upgrading and utilization: Current status and perspectives. Biotechnology Advances, 36(2), 452-466. doi:10.1016/j.biotechadv.2018.01.011 es_ES
dc.description.references Jeon, Y.-W., & Lee, D.-H. (2015). Gas Membranes for CO2/CH4 (Biogas) Separation: A Review. Environmental Engineering Science, 32(2), 71-85. doi:10.1089/ees.2014.0413 es_ES
dc.description.references Murali, R. S., Sankarshana, T., & Sridhar, S. (2013). Air Separation by Polymer-based Membrane Technology. Separation & Purification Reviews, 42(2), 130-186. doi:10.1080/15422119.2012.686000 es_ES
dc.description.references Kanehashi, S., Chen, G. Q., Ciddor, L., Chaffee, A., & Kentish, S. E. (2015). The impact of water vapor on CO2 separation performance of mixed matrix membranes. Journal of Membrane Science, 492, 471-477. doi:10.1016/j.memsci.2015.05.046 es_ES
dc.description.references Kreuer, K. D. (2003). Proton-Conducting Oxides. Annual Review of Materials Research, 33(1), 333-359. doi:10.1146/annurev.matsci.33.022802.091825 es_ES
dc.description.references HAUGSRUD, R. (2007). Defects and transport properties in Ln6WO12 (Ln=La, Nd, Gd, Er). Solid State Ionics, 178(7-10), 555-560. doi:10.1016/j.ssi.2007.01.004 es_ES
dc.description.references Kim, S., Anselmi-Tamburini, U., Park, H. J., Martin, M., & Munir, Z. A. (2008). Unprecedented Room-Temperature Electrical Power Generation Using Nanoscale Fluorite-Structured Oxide Electrolytes. Advanced Materials, 20(3), 556-559. doi:10.1002/adma.200700715 es_ES
dc.description.references Fernández-Barquín, A., Casado-Coterillo, C., Palomino, M., Valencia, S., & Irabien, A. (2015). LTA/Poly(1-trimethylsilyl-1-propyne) Mixed-Matrix Membranes for High-Temperature CO2/N2Separation. Chemical Engineering & Technology, 38(4), 658-666. doi:10.1002/ceat.201400641 es_ES
dc.description.references Tena, A., Shishatskiy, S., Meis, D., Wind, J., Filiz, V., & Abetz, V. (2017). Influence of the Composition and Imidization Route on the Chain Packing and Gas Separation Properties of Fluorinated Copolyimides. Macromolecules, 50(15), 5839-5849. doi:10.1021/acs.macromol.7b01051 es_ES
dc.description.references Escorihuela, S., Tena, A., Shishatskiy, S., Escolástico, S., Brinkmann, T., Serra, J., & Abetz, V. (2018). Gas Separation Properties of Polyimide Thin Films on Ceramic Supports for High Temperature Applications. Membranes, 8(1), 16. doi:10.3390/membranes8010016 es_ES
dc.description.references Corma, A., Fornés, V., Guil, J. ., Pergher, S., Maesen, T. L. ., & Buglass, J. . (2000). Preparation, characterisation and catalytic activity of ITQ-2, a delaminated zeolite. Microporous and Mesoporous Materials, 38(2-3), 301-309. doi:10.1016/s1387-1811(00)00149-9 es_ES
dc.description.references Itoh, T., Mori, M., Inukai, M., Nitani, H., Yamamoto, T., Miyanaga, T., … Idemoto, Y. (2015). Effect of Annealing on Crystal and Local Structures of Doped Zirconia Using Experimental and Computational Methods. The Journal of Physical Chemistry C, 119(16), 8447-8458. doi:10.1021/jp5117118 es_ES
dc.description.references Vigneron, F., Sougi, M., Meriel, P., Herr, A., & Meyer, A. (1980). Etude par diffraction de neutrons des structures magnétiques de TbBe 13 à basse température. Journal de Physique, 41(2), 123-133. doi:10.1051/jphys:01980004102012300 es_ES
dc.description.references Scherb, T., Kimber, S. A. J., Stephan, C., Henry, P. F., Schumacher, G., Escolástico, S., … Banhart, J. (2016). Nanoscale order in the frustrated mixed conductor La5.6WO12−δ. Journal of Applied Crystallography, 49(3), 997-1008. doi:10.1107/s1600576716006415 es_ES
dc.description.references Han, D., Kishida, K., Shinoda, K., Inui, H., & Uda, T. (2013). A comprehensive understanding of structure and site occupancy of Y in Y-doped BaZrO3. Journal of Materials Chemistry A, 1(9), 3027. doi:10.1039/c2ta00675h es_ES
dc.description.references Morejudo, S. H., Zanón, R., Escolástico, S., Yuste-Tirados, I., Malerød-Fjeld, H., Vestre, P. K., … Kjølseth, C. (2016). Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science, 353(6299), 563-566. doi:10.1126/science.aag0274 es_ES
dc.description.references IZA Structure Comissionhttp://www.iza-structure.org/ es_ES
dc.description.references Lillepärg, J., Georgopanos, P., Emmler, T., & Shishatskiy, S. (2016). Effect of the reactive amino and glycidyl ether terminated polyethylene oxide additives on the gas transport properties of Pebax® bulk and thin film composite membranes. RSC Advances, 6(14), 11763-11772. doi:10.1039/c5ra22026b es_ES
dc.description.references Zhang, C., Dai, Y., Johnson, J. R., Karvan, O., & Koros, W. J. (2012). High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations. Journal of Membrane Science, 389, 34-42. doi:10.1016/j.memsci.2011.10.003 es_ES
dc.description.references Fernández-Barquín, A., Casado-Coterillo, C., Palomino, M., Valencia, S., & Irabien, A. (2016). Permselectivity improvement in membranes for CO2/N2 separation. Separation and Purification Technology, 157, 102-111. doi:10.1016/j.seppur.2015.11.032 es_ES
dc.description.references Sabetghadam, A., Seoane, B., Keskin, D., Duim, N., Rodenas, T., Shahid, S., … Gascon, J. (2016). Metal Organic Framework Crystals in Mixed-Matrix Membranes: Impact of the Filler Morphology on the Gas Separation Performance. Advanced Functional Materials, 26(18), 3154-3163. doi:10.1002/adfm.201505352 es_ES
dc.description.references Khayet, M., & García-Payo, M. C. (2009). X-Ray diffraction study of polyethersulfone polymer, flat-sheet and hollow fibers prepared from the same under different gas-gaps. Desalination, 245(1-3), 494-500. doi:10.1016/j.desal.2009.02.013 es_ES
dc.description.references RECIO, R., PALACIO, L., PRADANOS, P., HERNANDEZ, A., LOZANO, A., MARCOS, A., … DEABAJO, J. (2007). Gas separation of 6FDA–6FpDA membranesEffect of the solvent on polymer surfaces and permselectivity. Journal of Membrane Science, 293(1-2), 22-28. doi:10.1016/j.memsci.2007.01.022 es_ES
dc.description.references Calle, M., Lozano, A. E., de Abajo, J., de la Campa, J. G., & Álvarez, C. (2010). Design of gas separation membranes derived of rigid aromatic polyimides. 1. Polymers from diamines containing di-tert-butyl side groups. Journal of Membrane Science, 365(1-2), 145-153. doi:10.1016/j.memsci.2010.08.051 es_ES
dc.description.references Liu, Y., Huang, J., Tan, J., Zeng, Y., Ding, Q., Zhang, H., … Xiang, X. (2017). Barrier and thermal properties of polyimide derived from a diamine monomer containing a rigid planar moiety. Polymer International, 66(8), 1214-1222. doi:10.1002/pi.5381 es_ES
dc.description.references Yampolskii, Y., Shishatskii, S., Alentiev, A., & Loza, K. (1998). Correlations with and prediction of activation energies of gas permeation and diffusion in glassy polymers. Journal of Membrane Science, 148(1), 59-69. doi:10.1016/s0376-7388(98)00130-6 es_ES
dc.description.references Jamil, A., Ching, O. P., & Shariff, A. B. M. (2016). Current Status and Future Prospect of Polymer-Layered Silicate Mixed-Matrix Membranes for CO2 /CH4 Separation. Chemical Engineering & Technology, 39(8), 1393-1405. doi:10.1002/ceat.201500395 es_ES
dc.description.references Bae, T.-H., & Long, J. R. (2013). CO2/N2 separations with mixed-matrix membranes containing Mg2(dobdc) nanocrystals. Energy & Environmental Science, 6(12), 3565. doi:10.1039/c3ee42394h es_ES
dc.description.references Castarlenas, S., Téllez, C., & Coronas, J. (2017). Gas separation with mixed matrix membranes obtained from MOF UiO-66-graphite oxide hybrids. Journal of Membrane Science, 526, 205-211. doi:10.1016/j.memsci.2016.12.041 es_ES
dc.description.references Galve, A., Sieffert, D., Vispe, E., Téllez, C., Coronas, J., & Staudt, C. (2011). Copolyimide mixed matrix membranes with oriented microporous titanosilicate JDF-L1 sheet particles. Journal of Membrane Science, 370(1-2), 131-140. doi:10.1016/j.memsci.2011.01.011 es_ES
dc.description.references Vinoba, M., Bhagiyalakshmi, M., Alqaheem, Y., Alomair, A. A., Pérez, A., & Rana, M. S. (2017). Recent progress of fillers in mixed matrix membranes for CO 2 separation: A review. Separation and Purification Technology, 188, 431-450. doi:10.1016/j.seppur.2017.07.051 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem