Mostrar el registro sencillo del ítem
dc.contributor.author | Ortigosa, Nuria | es_ES |
dc.contributor.author | Pérez-Roselló, Víctor | es_ES |
dc.contributor.author | Donoso, Victor | es_ES |
dc.contributor.author | Osca Asensi, Joaquín | es_ES |
dc.contributor.author | Martínez-Dolz, Luis | es_ES |
dc.contributor.author | Fernández Rosell, Carmen | es_ES |
dc.contributor.author | Galbis Verdu, Antonio | es_ES |
dc.date.accessioned | 2020-06-24T03:31:33Z | |
dc.date.available | 2020-06-24T03:31:33Z | |
dc.date.issued | 2018-04 | es_ES |
dc.identifier.issn | 0140-0118 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/146880 | |
dc.description.abstract | [EN] Cardiac resynchronization therapy (CRT) is an effective treatment for those patients with severe heart failure. Regrettably, there are about one third of CRT "non-responders", i.e. patients who have undergone this form of device therapy but do not respond to it, which adversely affects the utility and cost-effectiveness of CRT. In this paper, we assess the ability of a novel surface ECG marker to predict CRT response. We performed a retrospective exploratory study of the ECG previous to CRT implantation in 43 consecutive patients with ischemic (17) or non-ischemic (26) cardiomyopathy. We extracted the QRST complexes (consisting of the QRS complex, the S-T segment, and the T wave) and obtained a measure of their energy by means of spectral analysis. This ECG marker showed statistically significant lower values for non-responder patients and, joint with the duration of QRS complexes (the current gold-standard to predict CRT response), the following performances: 86% accuracy, 88% sensitivity, and 80% specificity. In this manner, the proposed ECG marker may help clinicians to predict positive response to CRT in a non-invasive way, in order to minimize unsuccessful procedures. | es_ES |
dc.description.sponsorship | This work was supported by MINECO under grants MTM2013-43540-P and MTM2016-76647-P. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Medical & Biological Engineering & Computing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Cardiac resynchronization therapy | es_ES |
dc.subject | Heart failure | es_ES |
dc.subject | Electrocardiogram | es_ES |
dc.subject.classification | EXPRESION GRAFICA EN LA INGENIERIA | es_ES |
dc.title | Early prediction of cardiac resynchronization therapy response by non-invasive electrocardiogram markers | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11517-017-1711-1 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2013-43540-P/ES/METODOS DEL ANALISIS FUNCIONAL Y TEORIA DE OPERADORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2016-76647-P/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada | es_ES |
dc.description.bibliographicCitation | Ortigosa, N.; Pérez-Roselló, V.; Donoso, V.; Osca Asensi, J.; Martínez-Dolz, L.; Fernández Rosell, C.; Galbis Verdu, A. (2018). Early prediction of cardiac resynchronization therapy response by non-invasive electrocardiogram markers. Medical & Biological Engineering & Computing. 56(4):611-621. https://doi.org/10.1007/s11517-017-1711-1 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11517-017-1711-1 | es_ES |
dc.description.upvformatpinicio | 611 | es_ES |
dc.description.upvformatpfin | 621 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 56 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\383261 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Boggiatto P, Fernández C, Galbis A (2009) A group representation related to the stockwell transform. Indiana University Mathematics Journal 58(5):2277–2296 | es_ES |
dc.description.references | Brignole M, Auricchio A, Baron-Esquivias G, Bordachar P, Boriani G et al (2013) 2013 ESC guidelines on cardiac pacing and cardiac resynchronization therapy. Europace 15:1070–1118 | es_ES |
dc.description.references | Brown RA, Lauzon ML, Frayne R (2010) A general description of linear time-frequency transforms and formulation of a fast, invertible transform that samples the continuous s-transform spectrum nonredundantly. IEEE Trans Signal Process 58(1): 281–290 | es_ES |
dc.description.references | Carità P, Corrado E, Pontone G, Curnis A, Bontempi L et al (2016) Non-responders to cardiac resynchronization therapy: insights from multimodality imaging and electrocardiography. A brief review. Int J Cardiol 225:402–407 | es_ES |
dc.description.references | Cazeau S, Leclercq C, Lavergne T, Walker S, Varma C, Linde C et al (2001) Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. N Engl J Med 344:873–880 | es_ES |
dc.description.references | Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):27:1–27:27 | es_ES |
dc.description.references | Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16(1):321–357 | es_ES |
dc.description.references | Cleland JGF, Abraham WT, Linde C, Gold MR, Young J et al (2013) An individual patient meta-analysis of five randomized trials assessing the effects of cardiac resyn- chronization therapy on morbidity and mortality in patients with symptomatic heart failure. Eur Heart Journal 34(46):3547–3556 | es_ES |
dc.description.references | Cleland JGF, Calvert MJ, Verboven Y, Freemantle N (2009) Effects of cardiac resynchronization therapy on long-term quality of life: an analysis from the Cardiac Resynchronisation-Heart Failure (CARE-HF) study. Am Heart J 157:457–466 | es_ES |
dc.description.references | Cleland JGF, Freemantle N, Erdmann E, Gras D, Kappenberger L et al (2012) Long-term mortality with cardiac resynchronization therapy in the Cardiac Resynchronization-Heart Failure (CARE-HF) trial. Eur J Heart Fail 14:628–634 | es_ES |
dc.description.references | Egoavil CA, Ho RT, Greenspon AJ, Pavri BB (2005) Cardiac resynchronization therapy in patients with right bundle branch block: analysis of pooled data from the MIRACLE and Contak CD trials. Heart Rhythm 2(6):611–615 | es_ES |
dc.description.references | Engels EB, Mafi-Rad M, van Stipdonk AM, Vernooy K, Prinzen FW (2016) Why QRS duration should be replaced by better measures of electrical activation to improve patient selection for cardiac resynchronization therapy. J Cardiovasc Transl Res 9(4):257–265 | es_ES |
dc.description.references | Engels EB, Végh EM, Van Deursen CJ, Vernooy K, Singh JP, Prinzen FW (2015) T-wave area predicts response to cardiac resynchronization therapy in patients with left bundle branch block. J Cardiovasc Electrophysiol 26(2):176–183 | es_ES |
dc.description.references | Eschalier R, Ploux S, Ritter P, Haïssaguerre M, Ellenbogen K, Bordachar P (2015) Nonspecific intraventricular conduction delay: definitions, prognosis, and implications for cardiac resynchronization therapy. Heart Rhythm 12(5):1071–1079 | es_ES |
dc.description.references | Goldenberg I, Kutyifa V, Klein HU, Cannom DS, Brown MW et al (2014) Survival with cardiac-resynchronization therapy in mild heart failure. N Engl J Med 370:1694–1701 | es_ES |
dc.description.references | He H, Bai Y, Garcia EA, Li S (2008) ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: International joint conference on neural networks, pp 1322–1328 | es_ES |
dc.description.references | Jacobsson J, Borgguist R, Reitan C, Ghafoori E, Chatterjee NA et al (2016) Usefulness of the sum absolute QRST integral to predict outcomes in patients receiving cardiac resynchronization therapy. J Cardiovasc Electrophysiol 118(3):389–395 | es_ES |
dc.description.references | McMurray JJ (2010) Clinical practice. Systolic heart failure. N Engl J Med 3623:228–238 | es_ES |
dc.description.references | Meyer CR, Keiser HN (1977) Electrocardiogram baseline noise estimation and removal using cubic splines and state-space computation techniques. Comput Biomed Res 10:459–470 | es_ES |
dc.description.references | Ortigosa N, Giménez VM (2014) Raw data extraction from electrocardiograms with portable document format. Comput Meth Programs Biomed 113(1):284–289 | es_ES |
dc.description.references | Ortigosa N, Osca J, Jiménez R, Rodríguez Y, Fernández C, Galbis A (2016) Predictive analysis of cardiac resynchronization therapy response by means of the ECG. 2016 Comput Cardio 43:753–756. https://doi.org/10.22489/CinC.2016.218-415 | es_ES |
dc.description.references | Ponikowski P, Voors AA, Anker S, Bueno H, Cleland JG, Coats AJ et al (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 18(8):891–975 | es_ES |
dc.description.references | Rad MM, Wijntjens GW, Engels EB, Blaauw Y, Luermans JG et al (2016) Vectorcardiographic QRS area identifies delayed left ventricular lateral wall activation determined by electroanatomic mapping in candidates for cardiac resynchronization therapy. Heart Rhythm 13(1):217–225 | es_ES |
dc.description.references | Shanks M, Delgado V, Bax JJ (2016) Cardiac resynchronization therapy in non-ischemic cardiomyopathy. Journal of Atrial Fibrillation 8(5):47–52 | es_ES |
dc.description.references | Singh JP, Fan D, Heist EK, Alabiad CR, Taub C et al (2006) Left ventricular lead electrical delay predicts response to cardiac resynchronization therapy. Heart Rhythm 3(11):1285–1292 | es_ES |
dc.description.references | Sohaib SM, Finegold JA, Nijjer SS, Hossain R, Linde C et al (2015) Opportunity to increase life span in narrow QRS cardiac resynchronization therapy recipients by deactivating ventricular pacing: evidence from randomized controlled trials. JACC Heart Fail 3:327–336 | es_ES |
dc.description.references | Stockwell RG, Mansinha L, Lowe RP (1996) Localization of the complex spectrum: the S transform. IEEE Trans Signal Process 44(4):998–1001 | es_ES |
dc.description.references | Tang ASL, Wells GA, Talajic M, Arnold MO, Sheldon R et al (2010) Cardiac-resynchronization therapy for mild-to-moderate heart failure. N Engl J Med 363:2385–2395 | es_ES |
dc.description.references | Tereshchenko LG, Cheng A, Park J, Wold N, Meyer TE, Gold MR et al (2015) Novel measure of electrical dyssynchrony predicts response in cardiac resynchronization therapy: results from the SMART-AV trial. Heart Rhythm 12(2):2402–2410 | es_ES |
dc.description.references | van Deursen CJ, Vernooy K, Dudink E, Bergfeldt L, Crijns HJ et al (2015) Vectorcardiographic QRS area as a novel predictor of response to cardiac resynchronization therapy. J Electrocardiol 48(1):45–52 | es_ES |
dc.description.references | Wang TJ (2003) Natural history of asymptomatic left ventricular systolic dysfunction in the community. Circulation 108:977–982 | es_ES |
dc.description.references | Woods B, Hawkins N, Mealing S, Sutton A, Abraham WT et al (2015) Individual patient data network meta-analysis of mortality effects of implantable cardiac devices. Heart 101:1800–1806 | es_ES |
dc.description.references | Ypenburg C, van Bommel RJ, Borleffs CJ, Bleeker GB, Boersma E et al (2009) Long-term prognosis after cardiac resynchronization therapy is related to the extent of left ventricular reverse remodeling at midterm follow-up. J Am Coll Cardiol 53(6):483–490 | es_ES |
dc.description.references | Yu CM, Hayes DL (2013) Cardiac resynchronization therapy: state of the art 2013. Eur Heart J 34:1396–1403 | es_ES |