- -

Monitoreo de sequías en El Salvador mediante variables teledetectadas usando la plataforma Google Earth Engine

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Monitoreo de sequías en El Salvador mediante variables teledetectadas usando la plataforma Google Earth Engine

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Córdova, O. es_ES
dc.contributor.author Venturini, V. es_ES
dc.contributor.author Walker, E. es_ES
dc.coverage.spatial east=-88.89653; north=13.794185; name= El Salvador es_ES
dc.date.accessioned 2020-06-29T10:18:13Z
dc.date.available 2020-06-29T10:18:13Z
dc.date.issued 2020-06-23
dc.identifier.issn 1133-0953
dc.identifier.uri http://hdl.handle.net/10251/147121
dc.description.abstract [ES] La sequía es un fenómeno que genera grandes pérdidas económicas para la sociedad y se están observando más frecuentemente debido al cambio climático. En Centroamérica este fenómeno se relaciona con la distribución anómala de la precipitación (P) en un período corto, dentro de la estación lluviosa. Específicamente, en El Salvador, el fenómeno denominado “canícula”, está asociado a una disminución importante de la P cuya duración es de pocos días, por lo que es difícil de monitorearlo sólo con la P, como se hace actualmente. En el presente se han desarrollado muchos indicadores para caracterizar las sequías; en particular, se destacan la precipitación estandarizada y los índices de condición propuestos por Kogan (1995), que admiten diversas fuentes de información. En este trabajo se aplicaron cinco indicadores de déficit hídrico - la P estandarizada, la evapotranspiración (ET), el índice de condición de la humedad del suelo (HSCI), el índice de condición de la vegetación (VCI) y estrés hídrico (EH) - para evaluar las sequías en El Salvador. Para ello se utilizó información satelital, bases de datos climáticas y la interface de programación disponible en la plataforma Google Earth Engine. Se analizó el comportamiento de los indicadores en el periodo 2015-2019 y en particular, el año extremadamente seco 2015, para determinar la capacidad de monitoreo de los indicadores utilizados. Los resultados obtenidos sugieren que el conjunto de índices propuesto permite monitorear la sequía, identificando el inicio, el impacto y la extensión territorial en El Salvador. es_ES
dc.description.abstract [EN] Drought is a phenomenon that causes great economic losses in the society and is being observed more frequently due to climate change. In Central America this event is related to the anomalous distribution of precipitation (P) in a short period, within the rainy season. Specifically, in El Salvador, the phenomenon socalled “canícula” is associated to a significant decrease in P that lasts few days, making difficult to monitor it with P alone, as it is currently done. At present, many indicators have been developed to characterize droughts. In particular, the standardized precipitation and the condition indices proposed by Kogan (1995) that use various sources of information, stand out. In this work, five indicators of water deficit were applied - the standardized P, evapotranspiration (ET), the soil moisture condition index (HSCI), the vegetation condition index (VCI) and water stress (EH)- to assess droughts in El Salvador. For this, satellite information, climate database and the application programming interface available on the Google Earth Engine platform were used. The behaviour of the indexes in the period 2015-2019 was analysed, particularly the extremely dry year 2015, to determine the monitoring capacity of the indicators used. The results obtained suggest that the proposed set of indicators allows monitoring the drought, by identifying the onset, impact and territorial extension of it in El Salvador. es_ES
dc.description.sponsorship Este trabajo fue realizado con el apoyo del Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y el Programa de Becas de la Organización Meteorológica Mundial (OMM), que financió la beca de Osmin Córdova. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista de Teledetección es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Water deficit es_ES
dc.subject Monitoring es_ES
dc.subject Remote sensing es_ES
dc.subject Google Earth Engine es_ES
dc.subject Water stress es_ES
dc.subject Déficit hídrico es_ES
dc.subject Monitoreo es_ES
dc.subject Teledetección es_ES
dc.subject Estrés hídrico es_ES
dc.title Monitoreo de sequías en El Salvador mediante variables teledetectadas usando la plataforma Google Earth Engine es_ES
dc.title.alternative Drought monitoring in El Salvador through remotely sensed variables using the Google Earth Engine platform es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/raet.2020.13420
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Córdova, O.; Venturini, V.; Walker, E. (2020). Monitoreo de sequías en El Salvador mediante variables teledetectadas usando la plataforma Google Earth Engine. Revista de Teledetección. 0(55):93-103. https://doi.org/10.4995/raet.2020.13420 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/raet.2020.13420 es_ES
dc.description.upvformatpinicio 93 es_ES
dc.description.upvformatpfin 103 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 0 es_ES
dc.description.issue 55 es_ES
dc.identifier.eissn 1988-8740
dc.relation.pasarela OJS\13420 es_ES
dc.contributor.funder Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina es_ES
dc.contributor.funder World Meteorological Organization es_ES
dc.description.references Cea, C., Cristóbal, J., Pons, X. 2007. An improved methodology to map snow cover by means of Landsat and MODIS imagery. En: Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. Barcelona. IEEE International, 4217-4220. https://doi.org/10.1109/IGARSS.2007.4423781 es_ES
dc.description.references Elvidge, C.D., Sutton, P.C., Wagner, T.W., Ryznar, R., Goetz, S.J., Smith, A.J., Jantz, C., Seto, K., Imhoff, M.L., Vogelmann, J., wang, Y.Q., Milesi, C., Nemani, R. 2004. Urbanization. En: Gutman, G. et al. (ed.). Land change science: Observing, monitoring, and understanding trajectories of change on the earth's surface. Dordrecht, Países Bajos: Kluwer Academic Publishers, pp. 315-328. https://doi.org/10.1007/978-1-4020-2562-4_18 es_ES
dc.description.references ESA. 2015. Sentinel-2 User Handbook. Recuperado de https://sentinel.esa.int/documents/247904/685211/ Sentinel-2_User_Handbook Último acceso: 4 de febrero, 2020. es_ES
dc.description.references González-Guerrero, O., Pons-Fernández, X., Bassols- Morey, R., Camps-Fernandez, F.J. 2019. Dinàmica de les superfícies de conreu a Catalunya mitjançant Teledetecció en el període 1987-2012. Quaderns Agraris, 46, 59-91. es_ES
dc.description.references Hansen, M.C., Loveland, T.R. 2012. A review of large area monitoring of land cover change using Landsat data. Remote Sensing of Environment, 122, 66-74. https://doi.org/10.1016/j.rse.2011.08.024 es_ES
dc.description.references ICC. 1992. Mapa d'usos del sòl de Catalunya. Institut Cartogràfic de Catalunya. Barcelona. 118 p. es_ES
dc.description.references ICGC (2017). Datos lidar. Institut Cartogràfic i Geològic de Catalunya. Recuperado de https://www.icgc.cat/ es/Descargas/Elevaciones/Datos-lidar Último acceso: 1 de mayo, 2020. es_ES
dc.description.references Loveland, T.R., Dwyer, J.L. 2012. Landsat: Building a strong future. Remote Sensing of Environment, 122, 22-29. https://doi.org/10.1016/j.rse.2011.09.022 es_ES
dc.description.references Moré, G., Pons, X. 2007. Influencia del número de imágenes en la calidad de la cartografía detallada de vegetación forestal. Revista de Teledetección, 28, 61- 68. Recuperado de http://www.aet.org.es/revistas/ revista28/7-111_More_revisado.pdf Último acceso: 1 de mayo, 2020. es_ES
dc.description.references Padial, M., Vidal-Macua, J.J., Serra, P., Ninyerola, M., Pons, X. 2019. Aplicación de filtros multicriterio basados en NDVI para la extracción de áreas de entrenamiento desde la base de datos SIOSE. Ruiz L.A., Estornell J., Calle A., Antuña-Sánchez J.C. (eds) Teledetección: hacia una visión global del cambio climático, pp. 311-314. ISBN: 978- 84-1320-038-5. Libro de actas XVIII Congreso de la Asociación Española de Teledetección, 24 - 27 Septiembre, Valladolid (Spain). es_ES
dc.description.references Padró, J.C., Pons, X., Aragonés, D., Díaz-Delgado, R., García, D., Bustamante, J., Pesquer, L., Domingo- Marimon, C., González-Guerrero, O., Cristóbal, J., Doktor, D., Lange, M. 2017. Radiometric Correction of Simultaneously Acquired Landsat-7/Landsat-8 and Sentinel-2A Imagery Using Pseudoinvariant Areas (PIA): Contributing to the Landsat Time Series Legacy. Remote Sensing, 9(12), 1319. https://doi.org/10.3390/rs9121319 es_ES
dc.description.references Padró, J.C., Muñoz, F.J., Ávila, L.A., Pesquer, L., Pons, X. 2018. Radiometric Correction of Landsat-8 and Sentinel-2A Scenes Using Drone Imagery in Synergy with Field Spectroradiometry. Remote Sensing, 10(11), 1687. https://doi.org/10.3390/rs10111687 es_ES
dc.description.references Pons, X. 2004. MiraMon. Sistema de Información Geográfica y software de Teledetección. Centre de Recerca Ecològica i Aplicacions Forestals, CREAF. Bellaterra. ISBN: 84-931323-4-9. Recuperado de http://www.miramon.cat/Index_es.htm Último acceso: 1 de mayo, 2020. es_ES
dc.description.references Pons, X., Ninyerola, M. 2008. Mapping a topographic global solar radiation model implemented in a GIS and refined with ground data. International Journal of Climatology, 28(13), 1821-1834. https://doi.org/10.1002/joc.1676 es_ES
dc.description.references Pons, X., Pesquer, L., Cristóbal, J., González- Guerrero, O. 2014. Automatic and improved radiometric correction of Landsat imagery using reference values from MODIS surface reflectance images. International Journal of Applied Earth Observation and Geoinformation, 33, 243-254. https://doi.org/10.1016/j.jag.2014.06.002 es_ES
dc.description.references Pons X., Masó J. 2016. A comprehensive open package format for preservation and distribution of geospatial data and metadata. Computers & Geosciences, 97, 89-97. https://doi.org/10.1016/j.cageo.2016.09.001 es_ES
dc.description.references Townshend, J.R., Masek, J.G., Huang, C., Vermote, E.F., Gao, F., Channan, S., Sexton, J.O., Feng, M., Narasimhan, R., Kim, D., Song, K., Song, D., Song, X. P., Noojipady, P., Tan, B., Hansen, M.C., Li, M., Wolfe, R.E. 2012. Global characterization and monitoring of forest cover using Landsat data: Opportunities and challenges. International Journal of Digital Earth, 5(5), 373-397. https://doi.org/10.1080/17538947.2012.713190 es_ES
dc.description.references Woodcock, C.E., Allen, R., Anderson, M., Belward, A., Bindschadler, R., Cohen, W., Gao, F., Goward, S.N., Helder, D., Helmer, E., Nemani, R., Oreopoulos, L., Schott, J., Thenkabail, P.S., Vermote, E.F., Vogelmann, J., Wulder, M.A., Wynne, R. 2008. Free access to Landsat imagery. Science, 320(5879), 1011. https://doi.org/10.1126/science.320.5879.1011a es_ES
dc.description.references Wulder, M.A., Masek, J.G., Cohen, W.B., Loveland, T.R., Woodcock, C.E. 2012. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sensing of Environment, 122, 2-10. https://doi.org/10.1016/j.rse.2012.01.010 es_ES
dc.description.references Chang, K.Y., Xu, L., Starr, G., Paw U, K.T. 2018. A Drought Indicator Reflecting Ecosystem Responses to Water Availability: The Normalized Ecosystem Drought Index. Agricultural and Forest Meteorology, 250-251, 102-117. https://doi.org/10.1016/j.agrformet.2017.12.001 es_ES
dc.description.references Dada, H., Sevilla M. 2009. IV censo agropecuario 2007-2008. Resumen de Resultados [On line]. San Salvador: Ministry of Economy, Vice-ministry of Industry es_ES
dc.description.references (SV) 2009 Dec [cited 2013 Aug 18]. 74 p. es_ES
dc.description.references Didan, K., Munoz, A. B., Solano, R., Huete, A. 2015. MODIS vegetation index user's guide (MOD13 series). University of Arizona: Vegetation Index and Phenology Lab. es_ES
dc.description.references Du, L., Tian, Q., Yu, T., Meng, Q., Jancso, T., Udvardy, P., Huang, Y. 2013. A comprehensive drought monitoring method integrating MODIS and TRMM data. International Journal of Applied Earth Observation and Geoinformation, 23, 245-253. https://doi.org/10.1016/j.jag.2012.09.010 es_ES
dc.description.references Entekhabi, D., Yueh, S., O'Neill, P.E., Kellog, K.H., Allen, A., Bindlish, R., Das, N., et al. 2014. SMAP Handbook-Soil Moisture Active Passive: mapping Soil Moisture and Freeze/Thaw from space. National Aeronautic Space Administration. es_ES
dc.description.references Fensholt, R., Sandholt, I. 2003. Derivation of a shortwave infrared water stress index from MODIS near- and shortwave infrared data in a semiarid environment. Remote Sensing Environment, 87, 111-121. https://doi.org/10.1016/j.rse.2003.07.002 es_ES
dc.description.references Food and Agriculture Organization of the United Nations, 1974. Soil Map of the World, 1:5 000 000: Volume I: Legend. es_ES
dc.description.references García-Haro, F.J., Campos-Taberner, M., Sabater, N., Belda, F., Moreno, A., Gilabert, M.A., Martínez, B., Pérez-Hoyos A., Meliá, J. 2014. Vulnerabilidad de la vegetación a la sequía en España, Revista de Teledetección, 42, 29-37. https://doi.org/10.4995/raet.2014.2283 es_ES
dc.description.references Girolimetto, D., Venturini, V. 2013. Water Stress Estimation from NDVI-Ts Plot and the Wet Environment Evapotranspiration. Advances in Remote Sensing, 2, 283-291. https://doi.org/10.4236/ ars.2013.24031 es_ES
dc.description.references Girolimetto, D., Venturini, V. 2014. Evapotranspiration and water stress estimation from TIR and SWIR bands. Agriculture, Forestry and Fisheries, 3(6-1), 36-45. es_ES
dc.description.references Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R. 2017. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sensing of Environment, 202, 18-27. https://doi.org/10.1016/j.rse.2017.06.031 es_ES
dc.description.references Holzman, M.E., Carmona, F., Rivas, R., Niclòs, R. 2018. Early assessment of crop yield from remotely sensed water stress and solar radiation data. ISPRS journal of photogrammetry and remote sensing, 145, 297-308. https://doi.org/10.1016/j.isprsjprs.2018.03.014 es_ES
dc.description.references Kattan, C., Menjívar, L., Molina, G., Peñate, Y., Estrada A., Moran, I., Chávez T., Arriola B., Cruz D., Vides R., Erazo A., Beltrán H., Rivas C., Barrera G., Cañas, A. 2017. Informe Nacional del Estado de los Riesgos y Vulnerabilidades, San Salvador. Ministerio de Medio Ambiente y Recursos Naturales. es_ES
dc.description.references Kim, D., Rhee J. 2016. A drought index based on actual evapotranspiration from the Bouchet hypothesis. Geophysical Research Letters, 43, 10277-10285. https://doi.org/10.1002/2016GL070302 es_ES
dc.description.references Kogan, F.N. 1990. Remote sensing of weather impacts on vegetation in non-homogeneous areas. International Journal of Remote Sensing, 11(8), 1405-1419. https://doi.org/10.1080/01431169008955102 es_ES
dc.description.references Kogan, F.N. 1995. Application of vegetation index and brightness temperature for drought detection. Advances in space research, 15(11), 91-100. https://doi.org/10.1016/0273-1177(95)00079-T es_ES
dc.description.references Mishra, A., Vu, T., Veettil, A. V., Entekhabi, D. 2017. Drought monitoring with soil moisture active passive (SMAP) measurements. Journal of Hydrology, 552, 620-632. https://doi.org/10.1016/j.jhydrol.2017.07.033 es_ES
dc.description.references Mladenova, I.E., Bolten, J.D., Crow, W.T., Sazib, N., Cosh, M.H., Tucker, C.J., Reynolds, C. 2019. Evaluating the Operational Application of SMAP for Global Agricultural Drought Monitoring. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(9), 3387-3397. https://doi.org/10.1109/JSTARS.2019.2923555 es_ES
dc.description.references Mo, K.C. 2008. Model-based drought indices over the United States. Journal of Hydrometeorology, 9(6), 1212-1230. https://doi.org/10.1175/2008JHM1002.1 es_ES
dc.description.references Moran, M.S., Clarke, T.R., Inoue, Y., Vidal, A. 1994. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sensing of Environment, 49(3), 246- 263. https://doi.org/10.1016/0034-4257(94)90020-5 es_ES
dc.description.references Priestley, C.H.B., Taylor, R.J. 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100, 81-92. https://doi.org/10.1175/1520-0493(1972)100%3C0 081:OTAOSH%3E2.3.CO;2 es_ES
dc.description.references Rodell, M., Houser, P.R., Jambor, U.E.A., Gottschalck, J., Mitchell, K., Meng, C.J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J.K., Walker, J.P., Lohmann, D., Toll, D. 2004. The global land data assimilation system. Bulletin of the American Meteorological Society, 85(3), 381-394. https://doi.org/10.1175/BAMS-85-3-381 es_ES
dc.description.references Sánchez, N., González-Zamora, Á., Martínez- Fernández, J., Piles, M., Pablos, M. 2018. Integrated remote sensing approach to global agricultural drought monitoring. Agricultural and forest meteorology, 259, 141-153. https://doi.org/10.1016/j.agrformet.2018.04.022 es_ES
dc.description.references Valladares, F., Vilagrosa, A., Peñuelas, J., Ogaya, R., Camarero, J. J., Corcuera, L., Sisó, S., Gil-Pelegrín, E. 2004. Estrés hídrico: ecofisiología y escalas de la sequía. En Valladares, F. Ecología del bosque mediterráneo en un mundo cambiante. 163-190. Ministerio de Medio Ambiente, EGRAF, S. A., Madrid. es_ES
dc.description.references Van der Zee Arias, A., Van der Zee, J., Meyrat, A., Poveda, C., Picado, L. 2012. Estudio de caracterización del Corredor Seco Centroamericano (Países CA-4): Tomo I. FAO, Roma (Italia). es_ES
dc.description.references Venturini, V., Islam, S., Rodríguez, L. 2008. Estimation of evaporative fraction and evapotranspiration from MODIS products using a complementary based model. Remote Sensing of Environment, 112(1), 132-141. https://doi.org/10.1016/j.rse.2007.04.014 es_ES
dc.description.references Vicente-Serrano, S.M., Beguería, S., López- Moreno, J.I. 2010. A multiscalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index (SPEI). Journal of Climate, 23, 1696-1718. https://doi.org/10.1175/2009JCLI2909.1 es_ES
dc.description.references Walker, E., García, G.A., Venturini, V., Carrasco, A. 2019. Regional evapotranspiration estimates using the relative soil moisture ratio derived from SMAP products. Agricultural Water Management, 216, 254- 263. https://doi.org/10.1016/j.agwat.2019.02.009 es_ES
dc.description.references Walker, E., Venturini, V. 2019. Land surface evapotranspiration estimation combining soil texture information and global reanalysis datasets in Google Earth Engine. Remote Sensing Letters, 10, 929-938. https://doi.org/10.1080/2150704X.2019.1633487 es_ES
dc.description.references Zhang, L., Jiao, W., Zhang, H., Huang, C., Tong, Q. 2017. Studying drought phenomena in the Continental United States in 2011 and 2012 using various drought indices. Remote sensing of environment, 190, 96- 106. https://doi.org/10.1016/j.rse.2016.12.010 es_ES
dc.description.references Zhou, L., Zhang, J., Wu, J., Zhao, L., Liu, M., Lü, A., Wu, Z. 2012. Comparison of remotely sensed and meteorological data-derived drought indices in mid-eastern China. International journal of remote sensing, 33(6), 1755-1779. https://doi.org/10.1080/01431161.2011.600349 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem