Mostrar el registro sencillo del ítem
dc.contributor.author | Báscones, A. | es_ES |
dc.contributor.author | Suárez, M. | es_ES |
dc.contributor.author | Ferrer-Julià, M. | es_ES |
dc.contributor.author | García-Meléndez, E. | es_ES |
dc.contributor.author | Colmenero-Hidalgo, E. | es_ES |
dc.contributor.author | Quirós, A. | es_ES |
dc.date.accessioned | 2020-06-29T10:40:42Z | |
dc.date.available | 2020-06-29T10:40:42Z | |
dc.date.issued | 2020-06-23 | |
dc.identifier.issn | 1133-0953 | |
dc.identifier.uri | http://hdl.handle.net/10251/147122 | |
dc.description.abstract | [ES] Se ha realizado el análisis mineralógico a través de las propiedades espectrales desarrolladas por muestras de suelos y sedimentos del borde noroccidental de la Cuenca del Duero. Las absorciones producidas por los óxidos y oxihidróxidos de hierro (hematites y goethita, principalmente) están localizadas en zonas del VNIR (400-1200 nm), mientras que las bandas de absorción presentes en los espectros del SWIR (1200-2500 nm) están relacionadas con la composición química de minerales arcillosos. Los espectros de reflectancia medidos en laboratorio han sido normalizados aplicando los métodos del Continuum Removal (CR) y la segunda derivada (SD). Este último puede resolver la superposición de bandas al cuantificar sutiles inflexiones de la curva. Esto ha permitido examinar las bandas de absorción por separado midiendo los parámetros geométricos desarrollados en ellas. La proporción de los minerales influye en la respuesta espectral y, por tanto, en los valores de los parámetros. Se han realizado correlaciones lineales entre estos valores y la proporción de las diferentes fases minerales obtenidas por difracción de rayos X. De los parámetros estudiados, la correlación entre la posición del centro de banda (BC) en la máxima absorción alrededor de longitudes de onda de 890-960 nm y la profundidad del rasgo de absorción a 470 nm (D470) ha permitido realizar una estimación relativa de la proporción de hematites/goethita. En cuanto a la distribución de los diferentes minerales de arcilla, se ha podido establecer una correlación entre la proporción de caolinita y la profundidad de las bandas de absorción a 1415 y 2210 nm, y en los rasgos de absorción cercanos a 1390 y 2160 nm, analizados en SD. | es_ES |
dc.description.abstract | [EN] The mineralogical analysis was carried out through the spectral properties developed by samples of soils and sediments from the northwestern edge of the Duero Basin. The absorptions produced by the oxides and Feoxyhydroxides (mainly hematite and goethite) are located in VNIR zones (400-1200 nm), while the absorption bands that are present in the SWIR spectra (1200-2500 nm) are related to the chemical composition of clay minerals. The reflectance spectra measured in the laboratory have been normalized by using the methods of Continuum Removal (CR) and the second derivative (SD). This last method can solve the band overlapping because it quantifies subtle drops in the curve. This has allowed the absorption bands to be examined separately by measurement of their geometrical parameters. The proportion of the minerals affects the spectral response and, accordingly, the values of the parameters. Linear correlations were conducted between these values and the proportion of the different mineral phases obtained by X-ray diffraction. In the studied parameters, the correlation between the band center (BC) position in the maximum absorption around the wavelengths at 890-960 nm and the absorption feature depth at 470 nm (D470) has enabled a relative estimation of the proportion of hematite/goethite. As for the distribution of the different clay minerals, a correlation has been established between the proportion of kaolinite and the absorption bands depth at 1415 and 2210 nm, and in the absorption features near 1390 and 2160 nm, analyzed in SD. | es_ES |
dc.description.sponsorship | Trabajo financiado por los Proyectos CGL2016-77005-R y ESP2017-89045-R del Ministerio de Ciencia, Innovación y Universidades, y el ProyectoLE169G18 de la Junta de Castilla y León. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista de Teledetección | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Fe oxide and clay mineralogy | es_ES |
dc.subject | Diffuse reflectance | es_ES |
dc.subject | Continuum Removal | es_ES |
dc.subject | Second derivative | es_ES |
dc.subject | Mineralogía de arcillas y óxidos de hierro | es_ES |
dc.subject | Reflectancia difusa | es_ES |
dc.subject | Segunda derivada | es_ES |
dc.title | Caracterización de minerales de arcilla y óxidos de hierro mediante espectroscopía de reflectancia difusa (VNIR–SWIR) | es_ES |
dc.title.alternative | Characterization of clay minerals and Fe oxides through diffuse reflectance spectroscopy (VNIR-SWIR) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/raet.2020.13331 | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ESP2017-89045-R/ES/ESPECTROSCOPIA DE IMAGENES DE SENSORES ESPACIALES, AEROTRANSPORTADOS Y TERRESTRES EN LA EXPLORACION GEOMORFOLOGICA DE MATERIAS PRIMAS: MINERALES DE ARCILLA Y OXIDOS DE HIERRO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Junta de Castilla y León//LE169G18/ES/TECNOLOGÍAS AVANZADAS DE TELEDETECCIÓN PARA LA EXPLORACIÓN DE RECURSOS GEOLÓGICOS, HÍDRICOS Y CULTURALES DE INTERÉS SOCIOECONÓMICO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Báscones, A.; Suárez, M.; Ferrer-Julià, M.; García-Meléndez, E.; Colmenero-Hidalgo, E.; Quirós, A. (2020). Caracterización de minerales de arcilla y óxidos de hierro mediante espectroscopía de reflectancia difusa (VNIR–SWIR). Revista de Teledetección. 0(55):49-57. https://doi.org/10.4995/raet.2020.13331 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/raet.2020.13331 | es_ES |
dc.description.upvformatpinicio | 49 | es_ES |
dc.description.upvformatpfin | 57 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 0 | es_ES |
dc.description.issue | 55 | es_ES |
dc.identifier.eissn | 1988-8740 | |
dc.relation.pasarela | OJS\13331 | es_ES |
dc.contributor.funder | Junta de Castilla y León | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Ben-Dor, E., Banin, A. 1995. Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Science Society of America Journal, 59(2), 364-37. https://doi.org/10.2136/ sssaj1995.03615995005900020014x | es_ES |
dc.description.references | Ben-Dor, E. 2002. Quantitative remote sensing of soil properties. Advances in Agronomy, 75, 173-243. https://doi.org/10.1016/S0065-2113(02)75005-0 | es_ES |
dc.description.references | Bishop, J.L., Lane, M.D., Dyar, M.D., Brown, A.J. 2008. Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite-serpentines, chlorites and micas. Clay Minerals, 43, 35- 54. https://doi.org/10.1180/claymin.2008.043.1.03 | es_ES |
dc.description.references | Brown, D.J., Shepherd, K.D., Walsh, M.G., Dewayne Mays, M., Reinsch, T.G. 2006. Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma, 132, 273-290. https://doi.org/10.1016/j.geoderma.2005.04.025 | es_ES |
dc.description.references | Burns, R.G. 1993. Mineralogical Applications of Crystal Field Theory. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511524899 | es_ES |
dc.description.references | Cariati, F., Erre, L., Micera, G., Piu, P., Gessa, C. 1981. Water molecules and hydroxyl groups in montmorillonites as studied by near infrared spectroscopy. Clays and Clay Minerals, 29, 157- 159. https://doi.org/10.1346/CCMN.1981.0290211 | es_ES |
dc.description.references | Clark, R.N., Roush, T.L. 1984. Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research, 89, 6329-6340. https://doi.org/10.1029/JB089iB07p06329 | es_ES |
dc.description.references | Clark, R.N., King, T.V.V., Klejwa, M., Swayze, G., Vergo, N. 1990. High spectral resolution reflectance spectroscopy of minerals. Journal of. Geophysical Research, 95, 12653-12680. https://doi.org/10.1029/JB095iB08p12653 | es_ES |
dc.description.references | Clark, R.N. 1999. Spectroscopy of rocks and minerals and principles of spectroscopy. In Remote Sensing for the Earth Sciences: Manual of Remote Sensing, 3nd ed., Vol. 3, pp. 3-58. Ed. by A.N. Rencz, ed., John Wiley & Sons Inc. | es_ES |
dc.description.references | Demetriades-Shah, T.H., Steven, M.D., Clark, J.A., 1990. High resolution derivative spectra in remote sensing. Remote Sensing of Environment, 33, 55-64. https://doi.org/10.1016/0034-4257(90)90055-Q | es_ES |
dc.description.references | Dufrechou, G., Grandjean, G., Bourguignon, A. 2015. Geometrical analysis of laboratory soil spectra in the short-wave infrared domain: Clay composition and estimation of the swelling potencial. Geoderma, 243, 92-107. https://doi.org/10.1016/j.geoderma.2014.12.014 | es_ES |
dc.description.references | García-Meléndez, E., Ferrer-Julià, M., Bermejo, A., Suárez, M. 2004. Relación entre la respuesta espectral (visible-infrarrojo cercano) y la composición mineralógica de materiales sedimentarios del borde occidental de la Cuenca del Duero. Rev. Soc. Geol. España, 17(1-2), 39-47. | es_ES |
dc.description.references | García-Rivas, J., Suárez, M., García-Romero, E., García-Meléndez, E. 2018. Identification and classification of mineralogical associations by VNIR-SWIR spectroscopy in the Tajo basin (Spain). International Journal of Applied Earth Observations and Geoinformation, 72, 57-65. https://doi.org/10.1016/j.jag.2018.05.028 | es_ES |
dc.description.references | González Menéndez, L., Heredia, N., Marcos, A. 2008. Mapa Geológico Digital continuo E. 1:50000, Zona Asturoccidental-Leonesa (Zona-1100). En: GEODE. Mapa Geológico Digital continuo de España, Cartografía del IGME. | es_ES |
dc.description.references | Kokaly, R.F., Clark, R.N., Swayze, G.A., Livo, K.E., Hoefen, T.M., Pearson, N.C., Wise, R.A., Benzel, W.M., Lowers, H.A., Driscoll, R.L. y Klein, A.J. 2017. USGS Spectral Library Version 7. U.S. Geological Survey Data Series 1035, 61pp. https://doi.org/10.3133/ds1035 | es_ES |
dc.description.references | Martín Pozas, J.M. 1975. Análisis cuantitativo de fases cristalinas por DRX. En: Difracción de muestras policristalinas. Método de Debye-Scherrer, J.A. Saja, ed., I.C.E. Universidad de Valladolid. | es_ES |
dc.description.references | Moore, D.M., Reynolds, R.C. 1997. X-ray diffraction and identification and analysis of clay minerals. 2nd Edition, Oxford University Press, New York. | es_ES |
dc.description.references | Pérez García, L.C. 1977. Los Sedimentos Auríferos del NO de la Cuenca del Duero (Provincia de León, España) y su Prospección. Tesis Doctoral, Universidad de Oviedo. | es_ES |
dc.description.references | Petit, S., Madejová, J., Decarreau, A., Martin, F. 1999. Characterization of octahedral substitutions in kaolinites using near Infrared spectroscopy. Clays and Clay Minerals, 47, 103-108. https://doi.org/10.1346/CCMN.1999.0470111 | es_ES |
dc.description.references | Petit, S., Decarreau, A., Martin, F., Buchetet, R. 2004. Refined relationship between the position of the fundamental OH stretching and the first overtones for clays. Phys. Chem. Minerals, 31, 585-592. https://doi.org/10.1007/s00269-004-0423-x | es_ES |
dc.description.references | Riaza, A., García-Meléndez, E., Suárez, M., Hausold, A., Beisl, U., Van Der Werff, H., Pascual, L. 2004. Climate-dependent iron bearing morphological units around lake marshes (Tablas de Daimiel, Spain) using hyperspectral DAIS 7915 and ROSIS Spectrometer data. Proceedings of SPIE - the international society for optical engineering, 5239, 322-332. https://doi.org/10.1117/12.511810 | es_ES |
dc.description.references | Scheinost, A.C., Chavernas, A., Barrón V., Torrent, J. 1998 Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify Fe oxide minerals in soils. Clays and Clay Minerals, 46, 528- 536. https://doi.org/10.1346/CCMN.1998.0460506 | es_ES |
dc.description.references | Sherman, D.M., Waite, T.D., 1985. Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV. American Mineralogist, 70, 1262-1269. | es_ES |
dc.description.references | Stenberg, B., Viscarra Rossel, R.A., Mouazen, A.M., Wetterlind, J. 2010. Visible and near infrared spectroscopy in soil science. Advances in Agronomy, 107, 163-215. https://doi.org/10.1016/S0065-2113(10)07005-7 | es_ES |
dc.description.references | Van der Meer, F. 2004. Analysis of spectral absorption features in hyperspectral imagery. International Journal of Applied Earth Observation and Geoinformation, 5, 55-68. https://doi.org/10.1016/j.jag.2003.09.001 | es_ES |
dc.description.references | Villar Alonso, P., Portero Urroz, G., González Cuadra, P., García Crespo J., Nieto García, A.B., Rubio Pascual, F.J., Gómez Fernández, F., Jiménez Benayas, S. 2005. Mapa Geológico Digital continuo E. 1:50000, Zona Centroibérica. Dominio Ollo de Sapo (Zona-1300). En: GEODE. Mapa Geológico Digital continuo de España, Cartografía del IGME. | es_ES |
dc.description.references | Viscarra Rossel, R.A., McGlynn, R.N., McBratney, A.B. 2006. Determining the composition of mineral-organic mixes using UV-vis-NIR diffuse reflectance spectroscopy. Geoderma, 137, 70-82. https://doi.org/10.1016/j.geoderma.2006.07.004 | es_ES |
dc.description.references | Viscarra Rossel, R.A., Cattle, S.R., Ortega, A., Fouad, Y. 2009. In situ measurements of soil colour, mineral composition and clay content by vis- NIR spectroscopy. Geoderma, 150, 253-266. https://doi.org/10.1016/j.geoderma.2009.01.025 | es_ES |
dc.description.references | Viscarra Rossel, R.A., Bui, E.N., de Caritat, P., McKenzie, N.J., 2010. Mapping iron oxides and the color of Australian soil using visible-near-infrared reflectance spectra, J. Geophys. Res., 115, F04031. https://doi.org/10.1029/2009JF001645 | es_ES |