- -

Analysis of the Machinability of Carbon Fiber Composite Materials in Function of Tool Wear and Cutting Parameters Using the Artificial Neural Network Approach

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Analysis of the Machinability of Carbon Fiber Composite Materials in Function of Tool Wear and Cutting Parameters Using the Artificial Neural Network Approach

Show full item record

Feito-Sánchez, N.; Muñoz-Sánchez, A.; Diaz-Alvarez, A.; Loya, J. (2019). Analysis of the Machinability of Carbon Fiber Composite Materials in Function of Tool Wear and Cutting Parameters Using the Artificial Neural Network Approach. Materials. 12(17):1-13. https://doi.org/10.3390/ma12172747

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/147314

Files in this item

Item Metadata

Title: Analysis of the Machinability of Carbon Fiber Composite Materials in Function of Tool Wear and Cutting Parameters Using the Artificial Neural Network Approach
Author: Feito-Sánchez, Norberto Muñoz-Sánchez, A. Diaz-Alvarez, A. Loya, J.A.
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Issued date:
Abstract:
[EN] Local delamination is the most undesirable damage associated with drilling carbon fiber reinforced composite materials (CFRPs). This defect reduces the structural integrity of the material, which affects the residual ...[+]
Subjects: Delamination , Tool wear , Drilling , Machinability , Composite , CFRP , Neural network
Copyrigths: Reconocimiento (by)
Source:
Materials. (eissn: 1996-1944 )
DOI: 10.3390/ma12172747
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/ma12172747
Project ID:
MINECO/DPI2017-89197-C2-1-R
AEI/DPI2017-89197-C2-2-R-AR
AGENCIA ESTATAL DE INVESTIGACION/FJCI-2017-34910
Thanks:
The Ministry of Economy and Competitiveness of Spain, projects DPI2017-89197-C2-1-R and DPI2017-89197-C2-2-R] and the Ministry of Science, Innovation and Universities, grant number [FJCI-2017-34910], funded this research.[+]
Type: Artículo

References

Huang, X. (2009). Fabrication and Properties of Carbon Fibers. Materials, 2(4), 2369-2403. doi:10.3390/ma2042369

Yang, Y., Jiang, Y., Liang, H., Yin, X., & Huang, Y. (2019). Study on Tensile Properties of CFRP Plates under Elevated Temperature Exposure. Materials, 12(12), 1995. doi:10.3390/ma12121995

Liu, D., Tang, Y., & Cong, W. L. (2012). A review of mechanical drilling for composite laminates. Composite Structures, 94(4), 1265-1279. doi:10.1016/j.compstruct.2011.11.024 [+]
Huang, X. (2009). Fabrication and Properties of Carbon Fibers. Materials, 2(4), 2369-2403. doi:10.3390/ma2042369

Yang, Y., Jiang, Y., Liang, H., Yin, X., & Huang, Y. (2019). Study on Tensile Properties of CFRP Plates under Elevated Temperature Exposure. Materials, 12(12), 1995. doi:10.3390/ma12121995

Liu, D., Tang, Y., & Cong, W. L. (2012). A review of mechanical drilling for composite laminates. Composite Structures, 94(4), 1265-1279. doi:10.1016/j.compstruct.2011.11.024

Hocheng, H., & Tsao, C. . (2003). Comprehensive analysis of delamination in drilling of composite materials with various drill bits. Journal of Materials Processing Technology, 140(1-3), 335-339. doi:10.1016/s0924-0136(03)00749-0

Hocheng, H., & Tsao, C. C. (2006). Effects of special drill bits on drilling-induced delamination of composite materials. International Journal of Machine Tools and Manufacture, 46(12-13), 1403-1416. doi:10.1016/j.ijmachtools.2005.10.004

Hocheng, H., & Tsao, C. C. (2005). The path towards delamination-free drilling of composite materials. Journal of Materials Processing Technology, 167(2-3), 251-264. doi:10.1016/j.jmatprotec.2005.06.039

Davim, J. ., & Reis, P. (2003). Study of delamination in drilling carbon fiber reinforced plastics (CFRP) using design experiments. Composite Structures, 59(4), 481-487. doi:10.1016/s0263-8223(02)00257-x

Sardiñas, R. Q., Reis, P., & Davim, J. P. (2006). Multi-objective optimization of cutting parameters for drilling laminate composite materials by using genetic algorithms. Composites Science and Technology, 66(15), 3083-3088. doi:10.1016/j.compscitech.2006.05.003

Fernandes, M., & Cook, C. (2006). Drilling of carbon composites using a one shot drill bit. Part I: Five stage representation of drilling and factors affecting maximum force and torque. International Journal of Machine Tools and Manufacture, 46(1), 70-75. doi:10.1016/j.ijmachtools.2005.03.015

Fernandes, M., & Cook, C. (2006). Drilling of carbon composites using a one shot drill bit. Part II: empirical modeling of maximum thrust force. International Journal of Machine Tools and Manufacture, 46(1), 76-79. doi:10.1016/j.ijmachtools.2005.03.016

Feito, N., Diaz-Álvarez, A., Cantero, J. L., Rodríguez-Millán, M., & Miguélez, H. (2015). Experimental analysis of special tool geometries when drilling woven and multidirectional CFRPs. Journal of Reinforced Plastics and Composites, 35(1), 33-55. doi:10.1177/0731684415612931

Feito, N., Díaz-Álvarez, J., Díaz-Álvarez, A., Cantero, J., & Miguélez, M. (2014). Experimental Analysis of the Influence of Drill Point Angle and Wear on the Drilling of Woven CFRPs. Materials, 7(6), 4258-4271. doi:10.3390/ma7064258

Iliescu, D., Gehin, D., Gutierrez, M. E., & Girot, F. (2010). Modeling and tool wear in drilling of CFRP. International Journal of Machine Tools and Manufacture, 50(2), 204-213. doi:10.1016/j.ijmachtools.2009.10.004

Abrão, A. M., Rubio, J. C. C., Faria, P. E., & Davim, J. P. (2008). The effect of cutting tool geometry on thrust force and delamination when drilling glass fibre reinforced plastic composite. Materials & Design, 29(2), 508-513. doi:10.1016/j.matdes.2007.01.016

Rawat, S., & Attia, H. (2009). Wear mechanisms and tool life management of WC–Co drills during dry high speed drilling of woven carbon fibre composites. Wear, 267(5-8), 1022-1030. doi:10.1016/j.wear.2009.01.031

Fernández-Pérez, J., Cantero, J. L., Díaz-Álvarez, J., & Miguélez, M. H. (2017). Influence of cutting parameters on tool wear and hole quality in composite aerospace components drilling. Composite Structures, 178, 157-161. doi:10.1016/j.compstruct.2017.06.043

Tsao, C. C., & Hocheng, H. (2007). Effect of tool wear on delamination in drilling composite materials. International Journal of Mechanical Sciences, 49(8), 983-988. doi:10.1016/j.ijmecsci.2007.01.001

Chen, W.-C. (1997). Some experimental investigations in the drilling of carbon fiber-reinforced plastic (CFRP) composite laminates. International Journal of Machine Tools and Manufacture, 37(8), 1097-1108. doi:10.1016/s0890-6955(96)00095-8

Murphy, C., Byrne, G., & Gilchrist, M. D. (2002). The performance of coated tungsten carbide drills when machining carbon fibre-reinforced epoxy composite materials. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 216(2), 143-152. doi:10.1243/0954405021519735

Fernández-Pérez, J., Cantero, J., Díaz-Álvarez, J., & Miguélez, M. (2019). Hybrid Composite-Metal Stack Drilling with Different Minimum Quantity Lubrication Levels. Materials, 12(3), 448. doi:10.3390/ma12030448

Tsao, C. ., & Hocheng, H. (2004). Taguchi analysis of delamination associated with various drill bits in drilling of composite material. International Journal of Machine Tools and Manufacture, 44(10), 1085-1090. doi:10.1016/j.ijmachtools.2004.02.019

Palanikumar, K., Prakash, S., & Shanmugam, K. (2008). Evaluation of Delamination in Drilling GFRP Composites. Materials and Manufacturing Processes, 23(8), 858-864. doi:10.1080/10426910802385026

Mohan, N. S., Kulkarni, S. M., & Ramachandra, A. (2007). Delamination analysis in drilling process of glass fiber reinforced plastic (GFRP) composite materials. Journal of Materials Processing Technology, 186(1-3), 265-271. doi:10.1016/j.jmatprotec.2006.12.043

Srinivasa Rao, B., Rudramoorthy, R., Srinivas, S., & Nageswara Rao, B. (2008). Effect of drilling induced damage on notched tensile and pin bearing strengths of woven GFR-epoxy composites. Materials Science and Engineering: A, 472(1-2), 347-352. doi:10.1016/j.msea.2007.03.023

Enemuoh, E. U., El-Gizawy, A. S., & Chukwujekwu Okafor, A. (2001). An approach for development of damage-free drilling of carbon fiber reinforced thermosets. International Journal of Machine Tools and Manufacture, 41(12), 1795-1814. doi:10.1016/s0890-6955(01)00035-9

Saravanan, M., Ramalingam, D., Manikandan, G., & Kaarthikeyen, R. R. (2012). Multi Objective Optimization of Drilling Parameters Using Genetic Algorithm. Procedia Engineering, 38, 197-207. doi:10.1016/j.proeng.2012.06.027

Feito, N., Milani, A. S., & Muñoz-Sánchez, A. (2015). Drilling optimization of woven CFRP laminates under different tool wear conditions: a multi-objective design of experiments approach. Structural and Multidisciplinary Optimization, 53(2), 239-251. doi:10.1007/s00158-015-1324-y

Krishnaraj, V., Prabukarthi, A., Ramanathan, A., Elanghovan, N., Senthil Kumar, M., Zitoune, R., & Davim, J. P. (2012). Optimization of machining parameters at high speed drilling of carbon fiber reinforced plastic (CFRP) laminates. Composites Part B: Engineering, 43(4), 1791-1799. doi:10.1016/j.compositesb.2012.01.007

Krishnamoorthy, A., Rajendra Boopathy, S., Palanikumar, K., & Paulo Davim, J. (2012). Application of grey fuzzy logic for the optimization of drilling parameters for CFRP composites with multiple performance characteristics. Measurement, 45(5), 1286-1296. doi:10.1016/j.measurement.2012.01.008

Abhishek, K., Datta, S., & Mahapatra, S. S. (2014). Optimization of thrust, torque, entry, and exist delamination factor during drilling of CFRP composites. The International Journal of Advanced Manufacturing Technology, 76(1-4), 401-416. doi:10.1007/s00170-014-6199-3

El Kadi, H. (2006). Modeling the mechanical behavior of fiber-reinforced polymeric composite materials using artificial neural networks—A review. Composite Structures, 73(1), 1-23. doi:10.1016/j.compstruct.2005.01.020

Altinkok, N., & Koker, R. (2004). Neural network approach to prediction of bending strength and hardening behaviour of particulate reinforced (Al–Si–Mg)-aluminium matrix composites. Materials & Design, 25(7), 595-602. doi:10.1016/j.matdes.2004.02.014

Karnik, S. R., Gaitonde, V. N., Rubio, J. C., Correia, A. E., Abrão, A. M., & Davim, J. P. (2008). Delamination analysis in high speed drilling of carbon fiber reinforced plastics (CFRP) using artificial neural network model. Materials & Design, 29(9), 1768-1776. doi:10.1016/j.matdes.2008.03.014

Altinkok, N., & Koker, R. (2006). Modelling of the prediction of tensile and density properties in particle reinforced metal matrix composites by using neural networks. Materials & Design, 27(8), 625-631. doi:10.1016/j.matdes.2005.01.005

Stone, R., & Krishnamurthy, K. (1996). A neural network thrust force controller to minimize delamination during drilling of graphite-epoxy laminates. International Journal of Machine Tools and Manufacture, 36(9), 985-1003. doi:10.1016/0890-6955(96)00013-2

Kuo, C.-F. J., Chang, C.-D., Su, T.-L., & Fu, C.-T. (2008). Optimization of the Dyeing Process and Prediction of Quality Characteristics on Elastic Fiber Blending Fabrics. Polymer-Plastics Technology and Engineering, 47(7), 678-687. doi:10.1080/03602550802129569

Chen, W.-C., Fu, G.-L., Tai, P.-H., & Deng, W.-J. (2009). Process parameter optimization for MIMO plastic injection molding via soft computing. Expert Systems with Applications, 36(2), 1114-1122. doi:10.1016/j.eswa.2007.10.020

Ko, Y.-D., Moon, P., Kim, C. E., Ham, M.-H., Myoung, J.-M., & Yun, I. (2009). Modeling and optimization of the growth rate for ZnO thin films using neural networks and genetic algorithms. Expert Systems with Applications, 36(2), 4061-4066. doi:10.1016/j.eswa.2008.03.010

Faraz, A., Biermann, D., & Weinert, K. (2009). Cutting edge rounding: An innovative tool wear criterion in drilling CFRP composite laminates. International Journal of Machine Tools and Manufacture, 49(15), 1185-1196. doi:10.1016/j.ijmachtools.2009.08.002

Ashrafi, H. R., Jalal, M., & Garmsiri, K. (2010). Prediction of load–displacement curve of concrete reinforced by composite fibers (steel and polymeric) using artificial neural network. Expert Systems with Applications, 37(12), 7663-7668. doi:10.1016/j.eswa.2010.04.076

Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics, 2(2), 164-168. doi:10.1090/qam/10666

Khashaba, U. A., El-Sonbaty, I. A., Selmy, A. I., & Megahed, A. A. (2010). Machinability analysis in drilling woven GFR/epoxy composites: Part II – Effect of drill wear. Composites Part A: Applied Science and Manufacturing, 41(9), 1130-1137. doi:10.1016/j.compositesa.2010.04.011

Heisel, U., & Pfeifroth, T. (2012). Influence of Point Angle on Drill Hole Quality and Machining Forces When Drilling CFRP. Procedia CIRP, 1, 471-476. doi:10.1016/j.procir.2012.04.084

Díaz-Álvarez, A., Díaz-Álvarez, J., Santiuste, C., & Miguélez, M. H. (2019). Experimental and numerical analysis of the influence of drill point angle when drilling biocomposites. Composite Structures, 209, 700-709. doi:10.1016/j.compstruct.2018.11.018

[-]

This item appears in the following Collection(s)

Show full item record