- -

Electroconductivity of Al2O3/graphene nanocomposite processed by SPS technique

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Electroconductivity of Al2O3/graphene nanocomposite processed by SPS technique

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sánchez Bolinches, Alejandro es_ES
dc.contributor.author Klyatskina, Elizaveta es_ES
dc.contributor.author Segovia-López, Francisco es_ES
dc.contributor.author Zholnin, A.G. es_ES
dc.contributor.author Stolyarov, Vladimir V. es_ES
dc.date.accessioned 2020-07-02T06:51:03Z
dc.date.available 2020-07-02T06:51:03Z
dc.date.issued 2019 es_ES
dc.identifier.issn 1757-8981 es_ES
dc.identifier.uri http://hdl.handle.net/10251/147320
dc.description.abstract [EN] Electrical conductivity (rho), relative dielectric permittivity (epsilon) and dissipation factor (D) measured in graphene-alumina composites. Samples obtained by plasma spark sintering (SPS) from a mixture of raw powders: delta-alumina (36 nm average particle size) and graphene flakes (3 nm thickness and 2-3 microm length). Graphene content in samples was 0, 1 and 2% by weight. The study carried out for frequencies from 50 Hz to 100 kHz. Both rho and epsilon were higher for Al2O3-2% graphene: up to 90 microS/m and 19 respectively; while alumina with 1% graphene showed similar values to the pure alumina samples: 50 microS/m to electrical conductivity and 16 to relative permittivity. The dissipation factor was similar in the three materials tested. D increased with the frequency, reaching high values (0.7) at 100 kHz. Composites with 1 and 2% graphene content showed a dissimilar dielectric behavior with the frequency. Alumina reflected a classical behavior of the permittivity dependence with the frequency. Graphene composites also show the same behavior at frequencies above 100 Hz. Below this frequency, the presence of graphene increases the relative permittivity to exceed that from pure alumina. The graphene content leads to rise of relative permittivity, which means easier polarizability. es_ES
dc.description.sponsorship Authors wishing to acknowledge the financial support of the Ministry of Education and Science of the Russian Federation, project no. 11.1957.2017/4.6 (composite compaction processing); RNF (properties investigation), grant no. 16-19-10213. es_ES
dc.language Inglés es_ES
dc.publisher IOP Publishing es_ES
dc.relation.ispartof IOP Conference Series Materials Science and Engineering es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Alumina es_ES
dc.subject Al2O3 es_ES
dc.subject Graphene es_ES
dc.subject Nanopowder es_ES
dc.subject Nanocomposite es_ES
dc.subject SPS es_ES
dc.subject Plasma sintering es_ES
dc.subject Conductivity es_ES
dc.subject Dielectric permittivity es_ES
dc.subject Dissipation (D) es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Electroconductivity of Al2O3/graphene nanocomposite processed by SPS technique es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1088/1757-899X/558/1/012040 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Ministry of Education and Science of the Russian Federation//11.1957.2017%2F4.6/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/RFBR//6-19-10213/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Sánchez Bolinches, A.; Klyatskina, E.; Segovia-López, F.; Zholnin, A.; Stolyarov, VV. (2019). Electroconductivity of Al2O3/graphene nanocomposite processed by SPS technique. IOP Conference Series Materials Science and Engineering. 558:1-4. https://doi.org/10.1088/1757-899X/558/1/012040 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename International Conference on Synthesis and Consolidation Powder Materials (SCPM 2018) es_ES
dc.relation.conferencedate Octubre 23-26,2018 es_ES
dc.relation.conferenceplace Chernogolovka, Russia es_ES
dc.relation.publisherversion https://doi.org/10.1088/1757-899X/558/1/012040 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 4 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 558 es_ES
dc.relation.pasarela S\390762 es_ES
dc.contributor.funder Russian Science Foundation es_ES
dc.contributor.funder Ministry of Education and Science of the Russian Federation es_ES
dc.description.references Markandan, K., Chin, J. K., & Tan, M. T. T. (2016). Recent progress in graphene based ceramic composites: a review. Journal of Materials Research, 32(1), 84-106. doi:10.1557/jmr.2016.390 es_ES
dc.description.references Nieto, A., Bisht, A., Lahiri, D., Zhang, C., & Agarwal, A. (2016). Graphene reinforced metal and ceramic matrix composites: a review. International Materials Reviews, 62(5), 241-302. doi:10.1080/09506608.2016.1219481 es_ES
dc.description.references Miranzo, P., Belmonte, M., & Osendi, M. I. (2017). From bulk to cellular structures: A review on ceramic/graphene filler composites. Journal of the European Ceramic Society, 37(12), 3649-3672. doi:10.1016/j.jeurceramsoc.2017.03.016 es_ES
dc.description.references Tubío, C. R., Rama, A., Gómez, M., del Río, F., Guitián, F., & Gil, A. (2018). 3D-printed graphene-Al2O3 composites with complex mesoscale architecture. Ceramics International, 44(5), 5760-5767. doi:10.1016/j.ceramint.2017.12.234 es_ES
dc.description.references Kostecki, M., Grybczuk, M., Klimczyk, P., Cygan, T., Woźniak, J., Wejrzanowski, T., … Olszyna, A. (2016). Structural and mechanical aspects of multilayer graphene addition in alumina matrix composites–validation of computer simulation model. Journal of the European Ceramic Society, 36(16), 4171-4179. doi:10.1016/j.jeurceramsoc.2016.06.034 es_ES
dc.description.references Malek, O., González-Julián, J., Vleugels, J., Vanderauwera, W., Lauwers, B., & Belmonte, M. (2011). Carbon nanofillers for machining insulating ceramics. Materials Today, 14(10), 496-501. doi:10.1016/s1369-7021(11)70214-0 es_ES
dc.description.references Zholnin, A. G., Klyatskina, E. A., Grigoryev, E. G., Salvador, M. D., Misochenko, A. A., Dobrokhotov, P. L., … Stolyarov, V. V. (2018). Spark-Plasma Sintering of Al2O3–Graphene Nanocomposite. Inorganic Materials: Applied Research, 9(3), 498-503. doi:10.1134/s2075113318030334 es_ES
dc.description.references Almond, D. P., Bowen, C. R., & Rees, D. A. S. (2006). Composite dielectrics and conductors: simulation, characterization and design. Journal of Physics D: Applied Physics, 39(7), 1295-1304. doi:10.1088/0022-3727/39/7/s03 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem