- -

Benign /malignant classifier of soft tissue tumors using MR imaging

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Benign /malignant classifier of soft tissue tumors using MR imaging

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Garcia-Gomez, Juan M es_ES
dc.contributor.author Vidal, César es_ES
dc.contributor.author Martí-Bonmatí, Luís es_ES
dc.contributor.author Galant, Joaquín es_ES
dc.contributor.author Sans, Nicolas es_ES
dc.contributor.author Robles Viejo, Montserrat es_ES
dc.contributor.author Casacuberta Nolla, Francisco es_ES
dc.date.accessioned 2020-07-02T06:51:21Z
dc.date.available 2020-07-02T06:51:21Z
dc.date.issued 2004-03 es_ES
dc.identifier.issn 0968-5243 es_ES
dc.identifier.uri http://hdl.handle.net/10251/147328
dc.description.abstract [EN] This article presents a pattern-recognition approach to the soft tissue tumors (STT) benign/malignant character diagnosis using magnetic resonance (MR) imaging applied to a large multicenter database. Objective: To develop and test an automatic classifier of STT into benign or malignant by using classical MR imaging findings and epidemiological information. Materials and methods: A database of 430 patients (62% benign and 38% malignant) from several European multicenter registers. There were 61 different histologies (36 with benign and 25 with malignant nature). Three pattern-recognition methods (artificial neural networks, support vector machine, k-nearest neighbor) were applied to learn the discrimination between benignity and malignancy based on a defined MR imaging findings protocol. After the systems had learned by using training samples (with 302 cases), the clinical decision support system was tested in the diagnosis of 128 new STT cases. Results: An 88¿92% efficacy was obtained in a not-viewed set of tumors using the pattern-recognition techniques. The best results were obtained with a back-propagation artificial neural network. Conclusion: Benign vs. malignant STT discrimination is accurate by using pattern-recognition methods based on classical MR image findings. This objective tool will assist radiologists in STT grading. es_ES
dc.description.sponsorship The authors thank the involved hospitals in the project (Hospital Universitario San Juan de Alicante, Hospital Universitario Dr Peset de Valencia, Hospital Cruces de Baracaldo, Hospital Juan Canalejo de La Coruña, and Hôpital Universitaire de Toulouse) for their recruiting support; ADIRM (Asociación para el Desarrollo y la Investigación en Resonancia Magntica) for their members scientific advice; Ministerio de Sanidad y Consumo supporting grant INBIOMED; grant IM3 and Universidad Politécnica de Valencia for its supporting grant 20010690. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Magnetic Resonance Materials in Physics, Biology and Medicine es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Magnetic resonance imaging es_ES
dc.subject Soft tissue tumor es_ES
dc.subject Pattern recognition es_ES
dc.subject Clinical decision support systems es_ES
dc.subject Artificial neural networks es_ES
dc.subject Support vector machine es_ES
dc.subject K-Nearest neighbor es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Benign /malignant classifier of soft tissue tumors using MR imaging es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10334-003-0023-7 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//20010690/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Garcia-Gomez, JM.; Vidal, C.; Martí-Bonmatí, L.; Galant, J.; Sans, N.; Robles Viejo, M.; Casacuberta Nolla, F. (2004). Benign /malignant classifier of soft tissue tumors using MR imaging. Magnetic Resonance Materials in Physics, Biology and Medicine. 16(4):194-201. https://doi.org/10.1007/s10334-003-0023-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10334-003-0023-7 es_ES
dc.description.upvformatpinicio 194 es_ES
dc.description.upvformatpfin 201 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.description.issue 4 es_ES
dc.identifier.pmid 14999563 es_ES
dc.relation.pasarela S\26394 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem