Mostrar el registro sencillo del ítem
dc.contributor.author | Garcia-Gomez, Juan M | es_ES |
dc.contributor.author | Vidal, César | es_ES |
dc.contributor.author | Martí-Bonmatí, Luís | es_ES |
dc.contributor.author | Galant, Joaquín | es_ES |
dc.contributor.author | Sans, Nicolas | es_ES |
dc.contributor.author | Robles Viejo, Montserrat | es_ES |
dc.contributor.author | Casacuberta Nolla, Francisco | es_ES |
dc.date.accessioned | 2020-07-02T06:51:21Z | |
dc.date.available | 2020-07-02T06:51:21Z | |
dc.date.issued | 2004-03 | es_ES |
dc.identifier.issn | 0968-5243 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/147328 | |
dc.description.abstract | [EN] This article presents a pattern-recognition approach to the soft tissue tumors (STT) benign/malignant character diagnosis using magnetic resonance (MR) imaging applied to a large multicenter database. Objective: To develop and test an automatic classifier of STT into benign or malignant by using classical MR imaging findings and epidemiological information. Materials and methods: A database of 430 patients (62% benign and 38% malignant) from several European multicenter registers. There were 61 different histologies (36 with benign and 25 with malignant nature). Three pattern-recognition methods (artificial neural networks, support vector machine, k-nearest neighbor) were applied to learn the discrimination between benignity and malignancy based on a defined MR imaging findings protocol. After the systems had learned by using training samples (with 302 cases), the clinical decision support system was tested in the diagnosis of 128 new STT cases. Results: An 88¿92% efficacy was obtained in a not-viewed set of tumors using the pattern-recognition techniques. The best results were obtained with a back-propagation artificial neural network. Conclusion: Benign vs. malignant STT discrimination is accurate by using pattern-recognition methods based on classical MR image findings. This objective tool will assist radiologists in STT grading. | es_ES |
dc.description.sponsorship | The authors thank the involved hospitals in the project (Hospital Universitario San Juan de Alicante, Hospital Universitario Dr Peset de Valencia, Hospital Cruces de Baracaldo, Hospital Juan Canalejo de La Coruña, and Hôpital Universitaire de Toulouse) for their recruiting support; ADIRM (Asociación para el Desarrollo y la Investigación en Resonancia Magntica) for their members scientific advice; Ministerio de Sanidad y Consumo supporting grant INBIOMED; grant IM3 and Universidad Politécnica de Valencia for its supporting grant 20010690. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Magnetic Resonance Materials in Physics, Biology and Medicine | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Magnetic resonance imaging | es_ES |
dc.subject | Soft tissue tumor | es_ES |
dc.subject | Pattern recognition | es_ES |
dc.subject | Clinical decision support systems | es_ES |
dc.subject | Artificial neural networks | es_ES |
dc.subject | Support vector machine | es_ES |
dc.subject | K-Nearest neighbor | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Benign /malignant classifier of soft tissue tumors using MR imaging | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10334-003-0023-7 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//20010690/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Garcia-Gomez, JM.; Vidal, C.; Martí-Bonmatí, L.; Galant, J.; Sans, N.; Robles Viejo, M.; Casacuberta Nolla, F. (2004). Benign /malignant classifier of soft tissue tumors using MR imaging. Magnetic Resonance Materials in Physics, Biology and Medicine. 16(4):194-201. https://doi.org/10.1007/s10334-003-0023-7 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10334-003-0023-7 | es_ES |
dc.description.upvformatpinicio | 194 | es_ES |
dc.description.upvformatpfin | 201 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.pmid | 14999563 | es_ES |
dc.relation.pasarela | S\26394 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |