- -

Individual efficiency for the use of feed resources in rabbits

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Individual efficiency for the use of feed resources in rabbits

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Piles, Miriam es_ES
dc.contributor.author García-Tomas, M. es_ES
dc.contributor.author Rafel, O. es_ES
dc.contributor.author Ibañez Escriche, Noelia es_ES
dc.contributor.author Ramon, J. es_ES
dc.contributor.author Varona, L. es_ES
dc.date.accessioned 2020-07-04T03:31:32Z
dc.date.available 2020-07-04T03:31:32Z
dc.date.issued 2007-11 es_ES
dc.identifier.issn 0021-8812 es_ES
dc.identifier.uri http://hdl.handle.net/10251/147414
dc.description.abstract [EN] A Bayesian procedure, which allows consideration of the individual variation in the feed resource allocation pattern, is described and implemented in 2 sire lines of rabbit (Caldes and R). The procedure is based on a hierarchical Bayesian scheme, where the first stage of the model consists of a multiple regression model of feed intake on metabolic BW and BW gain. In a second stage, an animal model was assumed including batch, parity order, litter size, and common environmental litter effects. Animals were reared during the fattening period (from weaning at 32 d of age to 60 d of age) in individual cages on an experimental farm, and were fed ad libitum with a commercial diet. Body weight (g) and cumulative feed intake (g) were recorded weekly. Individual BW gain (g) and average BW (ABW, g) were calculated from these data for each 7-d period. Metabolic BW (g(0.75)) was estimated as ABW(0.75). The number of animals actually measured was 444 and 445 in the Caldes and R lines, respectively. Marginal posterior distributions of the genetic parameters were obtained by Gibbs sampling. Posterior means (posterior SD) for heritabilities for partial coefficients of regression of feed intake on metabolic BW and feed intake on BW gain were estimated to be 0.35 (0.17) and 0.40 (0.17), respectively, in the Caldes line and 0.26 (0.19) and 0.27 (0.14), respectively, in line R. The estimated posterior means (posterior SD) for the proportion of the phenotypic variance due to common litter environmental effects of the same coefficients of regression were respectively, 0.39 (0.14) and 0.28 (0.13) in the Caldes line and 0.44 (0.22) and 0.49 (0.14) in line R. These results suggest that efficiency of use of feed resources could be improved by including these coefficients in an index of selection. es_ES
dc.description.sponsorship Research was supported by INIA SC00-011. The authors acknowledge comments and suggestions made by M. Baselga and A. Blasco from the Universidad Politécnica de Valencia (Spain) and R. Rekaya for his assistance in solving numerical problems. es_ES
dc.language Inglés es_ES
dc.publisher American Society of Animal Science es_ES
dc.relation.ispartof Journal of Animal Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Bayesian analysis es_ES
dc.subject Feed efficiency es_ES
dc.subject Rabbit es_ES
dc.subject Selection es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Individual efficiency for the use of feed resources in rabbits es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.2527/jas.2006-218 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICYT//SC00-011/ES/Estimación de parámetros genéticos del carácter índice de conversión en dos líneas especializadas en crecimiento. Estudio de la cinética de producción de semen y posible interés del cruce dialélico entre líneas seleccionadas/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Piles, M.; García-Tomas, M.; Rafel, O.; Ibañez Escriche, N.; Ramon, J.; Varona, L. (2007). Individual efficiency for the use of feed resources in rabbits. Journal of Animal Science. 85(11):2846-2853. https://doi.org/10.2527/jas.2006-218 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.2527/jas.2006-218 es_ES
dc.description.upvformatpinicio 2846 es_ES
dc.description.upvformatpfin 2853 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 85 es_ES
dc.description.issue 11 es_ES
dc.identifier.pmid 17686894 es_ES
dc.relation.pasarela S\387679 es_ES
dc.contributor.funder Ministerio de Ciencia y Tecnología es_ES
dc.description.references Blasco, A. (2001). The Bayesian controversy in animal breeding. Journal of Animal Science, 79(8), 2023. doi:10.2527/2001.7982023x es_ES
dc.description.references Blasco, A., Piles, M., & Varona, L. (2003). A Bayesian analysis of the effect of selection for growth rate on growth curves in rabbits. Genetics Selection Evolution, 35(1). doi:10.1186/1297-9686-35-1-21 es_ES
dc.description.references Cameron, N. D., & Thompson, R. (1986). Design of multivariate selection experiments to estimate genetic parameters. Theoretical and Applied Genetics, 72(4), 466-476. doi:10.1007/bf00289528 es_ES
dc.description.references Estany, J., Camacho, J., Baselga, M., & Blasco, A. (1992). Selection response of growth rate in rabbits for meat production. Genetics Selection Evolution, 24(6), 527. doi:10.1186/1297-9686-24-6-527 es_ES
dc.description.references Gelman, A., & Rubin, D. B. (1992). Inference from Iterative Simulation Using Multiple Sequences. Statistical Science, 7(4), 457-472. doi:10.1214/ss/1177011136 es_ES
dc.description.references Geyer, C. J. (1992). Practical Markov Chain Monte Carlo. Statistical Science, 7(4), 473-483. doi:10.1214/ss/1177011137 es_ES
dc.description.references Gianola, D., & Sorensen, D. (2004). Quantitative Genetic Models for Describing Simultaneous and Recursive Relationships Between Phenotypes. Genetics, 167(3), 1407-1424. doi:10.1534/genetics.103.025734 es_ES
dc.description.references MIGNON-GRASTEAU, S. (1999). Genetic parameters of growth curve parameters in male and female chickens. British Poultry Science, 40(1), 44-51. doi:10.1080/00071669987827 es_ES
dc.description.references Paracchini, V., Pedotti, P., & Taioli, E. (2005). Genetics of Leptin and Obesity: A HuGE Review. American Journal of Epidemiology, 162(2), 101-114. doi:10.1093/aje/kwi174 es_ES
dc.description.references Piles, M., Gianola, D., Varona, L., & Blasco, A. (2003). Bayesian inference about parameters of a longitudinal trajectory when selection operates on a correlated trait1. Journal of Animal Science, 81(11), 2714-2724. doi:10.2527/2003.81112714x es_ES
dc.description.references Piles, M., Gomez, E. A., Rafel, O., Ramon, J., & Blasco, A. (2004). Elliptical selection experiment for the estimation of genetic parameters of the growth rate and feed conversion ratio in rabbits1. Journal of Animal Science, 82(3), 654-660. doi:10.2527/2004.823654x es_ES
dc.description.references Rauw, W. M., Luiting, P., Verstegen, M. W. A., Vangen, O., & Knap, P. W. (2000). Differences in food resource allocation in a long-term selection experiment for litter size in mice 2. Developmental trends in body weight against food intake. Animal Science, 71(1), 39-47. doi:10.1017/s1357729800054874 es_ES
dc.description.references Rauw, W. M., Knap, P. W., Verstegen, M. W. A., & Luiting, P. (2002). Food resource allocation patterns in lactating females in a long-term selection experiment for litter size in mice. Genetics Selection Evolution, 34(1). doi:10.1186/1297-9686-34-1-83 es_ES
dc.description.references Rekaya, R., Carabaño, M. J., & Toro, M. A. (2000). Bayesian Analysis of Lactation Curves of Holstein-Friesian Cattle Using a Nonlinear Model. Journal of Dairy Science, 83(11), 2691-2701. doi:10.3168/jds.s0022-0302(00)75163-0 es_ES
dc.description.references Rekaya, R., Weigel, K. A., & Gianola, D. (2001). Hierarchical nonlinear model for persistency of milk yield in the first three lactations of Holsteins. Livestock Production Science, 68(2-3), 181-187. doi:10.1016/s0301-6226(00)00239-6 es_ES
dc.description.references Varona, L., Moreno, C., Garcia Cortes, L. A., & Altarriba, J. (1998). Bayesian Analysis of Wood’s Lactation Curve for Spanish Dairy Cows. Journal of Dairy Science, 81(5), 1469-1478. doi:10.3168/jds.s0022-0302(98)75711-x es_ES
dc.description.references Wakefield, J. C., Smith, A. F. M., Racine-Poon, A., & Gelfand, A. E. (1994). Bayesian Analysis of Linear and Non-Linear Population Models by Using the Gibbs Sampler. Applied Statistics, 43(1), 201. doi:10.2307/2986121 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem