- -

Optical sensors based on polymeric nanofibers layers created by electrospinning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optical sensors based on polymeric nanofibers layers created by electrospinning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ponce-Alcántara, Salvador es_ES
dc.contributor.author Martín-Sánchez, David es_ES
dc.contributor.author Pérez-Márquez, A. es_ES
dc.contributor.author Maudes, J. es_ES
dc.contributor.author Murillo, N. es_ES
dc.contributor.author García-Rupérez, Jaime es_ES
dc.date.accessioned 2020-07-04T03:31:37Z
dc.date.available 2020-07-04T03:31:37Z
dc.date.issued 2018-10-01 es_ES
dc.identifier.issn 2159-3930 es_ES
dc.identifier.uri http://hdl.handle.net/10251/147415
dc.description.abstract [EN] Porous materials have become ideal candidates for the creation of optical sensors that are able to reach extremely high sensitivities, due to both the possibility to infiltrate the target substances on them and to their large surface-to-volume ratio. In this work, we present a new alternative for the creation of porous optical sensors based on the use of polymeric nanofibers (NFs) layers fabricated by electrospinning. Polyamide 6 (PA6) NFs layers with average diameters lower than 30 nm and high porosities have been used for the creation of Fabry-Perot optical sensing structures. which have shown an experimental sensitivity up to 1060 nm/R11.1 (refractive index unit). This high sensitivity, together with the low production cost and the possibility to be manufactured over large areas, make NFs-based structures a very promising candidate for the development of low-cost and high performance optical sensors. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement es_ES
dc.description.sponsorship The Spanish government (TEC2015-63838-C3-1-R-OPTONANOSENS); Basque government (KK-2017/00089-u4F). es_ES
dc.language Inglés es_ES
dc.publisher The Optical Society es_ES
dc.relation.ispartof Optical Materials Express es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject Optical sensing and sensors es_ES
dc.subject Optical materials es_ES
dc.subject Deposition and fabrication es_ES
dc.subject Polymers es_ES
dc.subject Geometric optical design es_ES
dc.subject Fabry-Pérot es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Optical sensors based on polymeric nanofibers layers created by electrospinning es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OME.8.003163 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Eusko Jaurlaritza//KK-2017%2F00089-mu4F/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2015-63838-C3-1-R/ES/DETECCION DE TOXINAS Y AGENTES PATOGENOS MEDIANTE BIOSENSORES OPTICOS NANOMETRICOS PARA AMENAZAS NBQ/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.description.bibliographicCitation Ponce-Alcántara, S.; Martín-Sánchez, D.; Pérez-Márquez, A.; Maudes, J.; Murillo, N.; García-Rupérez, J. (2018). Optical sensors based on polymeric nanofibers layers created by electrospinning. Optical Materials Express. 8(10):3163-3175. https://doi.org/10.1364/OME.8.003163 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1364/OME.8.003163 es_ES
dc.description.upvformatpinicio 3163 es_ES
dc.description.upvformatpfin 3175 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 10 es_ES
dc.relation.pasarela S\368877 es_ES
dc.contributor.funder Gobierno Vasco/Eusko Jaurlaritza es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Lin, V. S. (1997). A Porous Silicon-Based Optical Interferometric Biosensor. Science, 278(5339), 840-843. doi:10.1126/science.278.5339.840 es_ES
dc.description.references Vollmer, F., & Arnold, S. (2008). Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nature Methods, 5(7), 591-596. doi:10.1038/nmeth.1221 es_ES
dc.description.references Narsaiah, K., Jha, S. N., Bhardwaj, R., Sharma, R., & Kumar, R. (2011). Optical biosensors for food quality and safety assurance—a review. Journal of Food Science and Technology, 49(4), 383-406. doi:10.1007/s13197-011-0437-6 es_ES
dc.description.references Neethirajan, S., Weng, X., Tah, A., Cordero, J. O., & Ragavan, K. V. (2018). Nano-biosensor platforms for detecting food allergens – New trends. Sensing and Bio-Sensing Research, 18, 13-30. doi:10.1016/j.sbsr.2018.02.005 es_ES
dc.description.references Villatoro, J., & Zubia, J. (2016). [INVITED] New perspectives in photonic crystal fibre sensors. Optics & Laser Technology, 78, 67-75. doi:10.1016/j.optlastec.2015.07.025 es_ES
dc.description.references Khijwania, S. ., & Gupta, B. . (1998). Fiber optic evanescent field absorption sensor with high sensitivity and linear dynamic range. Optics Communications, 152(4-6), 259-262. doi:10.1016/s0030-4018(98)00168-0 es_ES
dc.description.references Barrios, C. A. (2009). Optical Slot-Waveguide Based Biochemical Sensors. Sensors, 9(6), 4751-4765. doi:10.3390/s90604751 es_ES
dc.description.references Harraz, F. A. (2014). Porous silicon chemical sensors and biosensors: A review. Sensors and Actuators B: Chemical, 202, 897-912. doi:10.1016/j.snb.2014.06.048 es_ES
dc.description.references Rodriguez, G. A., Hu, S., & Weiss, S. M. (2015). Porous silicon ring resonator for compact, high sensitivity biosensing applications. Optics Express, 23(6), 7111. doi:10.1364/oe.23.007111 es_ES
dc.description.references Pacholski, C. (2013). Photonic Crystal Sensors Based on Porous Silicon. Sensors, 13(4), 4694-4713. doi:10.3390/s130404694 es_ES
dc.description.references Mariani, S., Pino, L., Strambini, L. M., Tedeschi, L., & Barillaro, G. (2016). 10 000-Fold Improvement in Protein Detection Using Nanostructured Porous Silicon Interferometric Aptasensors. ACS Sensors, 1(12), 1471-1479. doi:10.1021/acssensors.6b00634 es_ES
dc.description.references Bisi, O., Ossicini, S., & Pavesi, L. (2000). Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surface Science Reports, 38(1-3), 1-126. doi:10.1016/s0167-5729(99)00012-6 es_ES
dc.description.references Caroselli, R., Martín Sánchez, D., Ponce Alcántara, S., Prats Quilez, F., Torrijos Morán, L., & García-Rupérez, J. (2017). Real-Time and In-Flow Sensing Using a High Sensitivity Porous Silicon Microcavity-Based Sensor. Sensors, 17(12), 2813. doi:10.3390/s17122813 es_ES
dc.description.references Iqbal, M., Gleeson, M. A., Spaugh, B., Tybor, F., Gunn, W. G., Hochberg, M., … Gunn, L. C. (2010). Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation. IEEE Journal of Selected Topics in Quantum Electronics, 16(3), 654-661. doi:10.1109/jstqe.2009.2032510 es_ES
dc.description.references Lee, J., Bae, K., Kang, G., Choi, M., Baek, S., Yoo, D., … Kim, K. (2015). Graded-lattice AAO photonic crystal heterostructure for high Q refractive index sensing. RSC Advances, 5(88), 71770-71777. doi:10.1039/c5ra15890g es_ES
dc.description.references Shi, Q., Vitchuli, N., Ji, L., Nowak, J., McCord, M., Bourham, M., & Zhang, X. (2010). A facile approach to fabricate porous nylon 6 nanofibers using silica nanotemplate. Journal of Applied Polymer Science, 120(1), 425-433. doi:10.1002/app.33161 es_ES
dc.description.references Yu, Q., & Zhou, X. (2010). Pressure sensor based on the fiber-optic extrinsic Fabry-Perot interferometer. Photonic Sensors, 1(1), 72-83. doi:10.1007/s13320-010-0017-9 es_ES
dc.description.references Anderson, M. A., Tinsley-Bown, A., Allcock, P., Perkins, E. A., Snow, P., Hollings, M., … Cox, T. I. (2003). Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores. physica status solidi (a), 197(2), 528-533. doi:10.1002/pssa.200306558 es_ES
dc.description.references Bergman, D. J. (1978). The dielectric constant of a composite material—A problem in classical physics. Physics Reports, 43(9), 377-407. doi:10.1016/0370-1573(78)90009-1 es_ES
dc.description.references XII. Colours in metal glasses and in metallic films. (1904). Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 203(359-371), 385-420. doi:10.1098/rsta.1904.0024 es_ES
dc.description.references Bruggeman, D. A. G. (1935). Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Annalen der Physik, 416(7), 636-664. doi:10.1002/andp.19354160705 es_ES
dc.description.references Looyenga, H. (1965). Dielectric constants of heterogeneous mixtures. Physica, 31(3), 401-406. doi:10.1016/0031-8914(65)90045-5 es_ES
dc.description.references Squire, E. K., Snow, P. A., Russell, P. S. J., Canham, L. T., Simons, A. J., & Reeves, C. L. (1998). Light emission from porous silicon single and multiple cavities. Journal of Luminescence, 80(1-4), 125-128. doi:10.1016/s0022-2313(98)00080-5 es_ES
dc.description.references Reece, P. J., Lérondel, G., Zheng, W. H., & Gal, M. (2002). Optical microcavities with subnanometer linewidths based on porous silicon. Applied Physics Letters, 81(26), 4895-4897. doi:10.1063/1.1531226 es_ES
dc.description.references Heikkilä, P., & Harlin, A. (2008). Parameter study of electrospinning of polyamide-6. European Polymer Journal, 44(10), 3067-3079. doi:10.1016/j.eurpolymj.2008.06.032 es_ES
dc.description.references Dhakate, S. R. (2010). Effect Of Processing Parameters On Morphology And Thermal Properties Of Electrospun Polycarbonate Nanofibers. Advanced Materials Letters, 1(3), 200-204. doi:10.5185/amlett.2010.8148 es_ES
dc.description.references Nitanan, T., Opanasopit, P., Akkaramongkolporn, P., Rojanarata, T., Ngawhirunpat, T., & Supaphol, P. (2011). Effects of processing parameters on morphology of electrospun polystyrene nanofibers. Korean Journal of Chemical Engineering, 29(2), 173-181. doi:10.1007/s11814-011-0167-5 es_ES
dc.description.references Huang, C., Chen, S., Lai, C., Reneker, D. H., Qiu, H., Ye, Y., & Hou, H. (2006). Electrospun polymer nanofibres with small diameters. Nanotechnology, 17(6), 1558-1563. doi:10.1088/0957-4484/17/6/004 es_ES
dc.description.references BALILI, R. B. (2012). TRANSFER MATRIX METHOD IN NANOPHOTONICS. International Journal of Modern Physics: Conference Series, 17, 159-168. doi:10.1142/s2010194512008057 es_ES
dc.description.references Rheims, J., Köser, J., & Wriedt, T. (1997). Refractive-index measurements in the near-IR using an Abbe refractometer. Measurement Science and Technology, 8(6), 601-605. doi:10.1088/0957-0233/8/6/003 es_ES
dc.description.references Acquaroli, L. N., Urteaga, R., Berli, C. L. A., & Koropecki, R. R. (2011). Capillary Filling in Nanostructured Porous Silicon. Langmuir, 27(5), 2067-2072. doi:10.1021/la104502u es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem