- -

Finite Intersection Property and Dynamical Compactness

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Finite Intersection Property and Dynamical Compactness

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Huang, Wen es_ES
dc.contributor.author Khilko, Danylo es_ES
dc.contributor.author Kolyada, Sergey es_ES
dc.contributor.author Peris Manguillot, Alfredo es_ES
dc.contributor.author Zhang, Guohua es_ES
dc.date.accessioned 2020-07-04T03:31:41Z
dc.date.available 2020-07-04T03:31:41Z
dc.date.issued 2018-09 es_ES
dc.identifier.issn 1040-7294 es_ES
dc.identifier.uri http://hdl.handle.net/10251/147417
dc.description.abstract [EN] Dynamical compactness with respect to a family as a new concept of chaoticity of a dynamical system was introduced and discussed in Huang et al. (J Differ Equ 260(9):6800-6827, 2016). In this paper we continue to investigate this notion. In particular, we prove that all dynamical systems are dynamically compact with respect to a Furstenberg family if and only if this family has the finite intersection property. We investigate weak mixing and weak disjointness by using the concept of dynamical compactness. We also explore further difference between transitive compactness and weak mixing. As a byproduct, we show that the -limit and the -limit sets of a point may have quite different topological structure. Moreover, the equivalence between multi-sensitivity, sensitive compactness and transitive sensitivity is established for a minimal system. Finally, these notions are also explored in the context of linear dynamics. es_ES
dc.description.sponsorship Wen Huang and Sergii Kolyada acknowledge the hospitality of the School of Mathematical Sciences of the Fudan University, Shanghai. Sergii Kolyada also acknowledges the hospitality of the Max-Planck-Institute fur Mathematik (MPIM) in Bonn, the Departament de Matematica Aplicada of the Universitat Politecnica de Valencia, the partial support of Project MTM2013-47093-P, and the Department of Mathematics of the Chinese University of Hong Kong. We thank the referees for careful reading and constructive comments that have resulted in substantial improvements to this paper. Wen Huang was supported by NNSF of China (11225105, 11431012); Alfred Peris was supported by MINECO, Projects MTM2013-47093-P and MTM2016-75963-P, and by GVA, Project PROMETEOII/2013/013; and Guohua Zhang was supported by NNSF of China (11671094). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Dynamics and Differential Equations es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Dynamical topology es_ES
dc.subject Dynamical compactness es_ES
dc.subject Transitive compactness es_ES
dc.subject Sensitive compactness es_ES
dc.subject Topological weak mixing es_ES
dc.subject Multi-sensitivity es_ES
dc.subject Transitive sensitivity es_ES
dc.subject Linear dynamics es_ES
dc.subject Hypercyclic operator es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Finite Intersection Property and Dynamical Compactness es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10884-017-9600-8 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//11225105/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//11431012/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//11671094/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2013-47093-P/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-75963-P/ES/DINAMICA DE OPERADORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F102/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Huang, W.; Khilko, D.; Kolyada, S.; Peris Manguillot, A.; Zhang, G. (2018). Finite Intersection Property and Dynamical Compactness. Journal of Dynamics and Differential Equations. 30(3):1221-1245. https://doi.org/10.1007/s10884-017-9600-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10884-017-9600-8 es_ES
dc.description.upvformatpinicio 1221 es_ES
dc.description.upvformatpfin 1245 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 30 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\384322 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Akin, E.: Recurrence in topological dynamics. The University Series in Mathematics, Plenum Press, New York, Furstenberg families and Ellis actions (1997) es_ES
dc.description.references Akin, E., Auslander, J., Berg, K.: When is a transitive map chaotic Convergence in ergodic theory and probability (Columbus, OH, 1993), Ohio State Univ. Math. Res. Inst. Publ., vol. 5, pp. 25–40, de Gruyter, Berlin (1996) es_ES
dc.description.references Akin, E., Glasner, E.: Residual properties and almost equicontinuity. J. Anal. Math. 84, 243–286 (2001) es_ES
dc.description.references Akin, E., Kolyada, S.: Li–Yorke sensitivity. Nonlinearity 16(4), 1421–1433 (2003) es_ES
dc.description.references Auslander, J.: Minimal flows and their extensions. North-Holland Mathematics Studies, vol. 153. North-Holland Publishing Co., Amsterdam, Notas de Matemática [Mathematical Notes], 122 (1988) es_ES
dc.description.references Auslander, J., Yorke, J.A.: Interval maps, factors of maps, and chaos. Tôhoku Math. J. (2) 32(2), 177–188 (1980) es_ES
dc.description.references Bayart, F., Matheron, É.: Dynamics of Linear Operators, Cambridge Tracts in Mathematics, vol. 179. Cambridge University Press, Cambridge (2009) es_ES
dc.description.references Bès, J., Peris, A.: Hereditarily hypercyclic operators. J. Funct. Anal. 167(1), 94–112 (1999) es_ES
dc.description.references Blanchard, F., Huang, W.: Entropy sets, weakly mixing sets and entropy capacity. Discrete Contin. Dyn. Syst. 20(2), 275–311 (2008) es_ES
dc.description.references de la Rosa, M., Read, C.: A hypercyclic operator whose direct sum $$T\oplus T$$ T ⊕ T is not hypercyclic. J. Oper. Theory 61(2), 369–380 (2009) es_ES
dc.description.references Dowker, Y.N., Friedlander, F.G.: On limit sets in dynamical systems. Proc. Lond. Math. Soc. (3) 4, 168–176 (1954) es_ES
dc.description.references Downarowicz, T.: Survey of odometers and Toeplitz flows. Algebraic and topological dynamics. Contemp. Math., vol. 385, Amer. Math. Soc., Providence, RI, pp. 7–37 (2005) es_ES
dc.description.references Edwards, R.E.: Functional analysis. Dover Publications Inc, New York. Theory and applications. Corrected reprint of the 1965 original (1995) es_ES
dc.description.references Furstenberg, H.: Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Syst. Theory 1, 1–49 (1967) es_ES
dc.description.references Furstenberg, H.: Recurrence in ergodic theory and combinatorial number theory. M. B. Porter Lectures. Princeton University Press, Princeton, NJ (1981) es_ES
dc.description.references Furstenberg, H., Weiss, B.: Topological dynamics and combinatorial number theory. J. Anal. Math. 34(1978), 61–85 (1979) es_ES
dc.description.references Glasner, E., Weiss, B.: Sensitive dependence on initial conditions. Nonlinearity 6(6), 1067–1075 (1993) es_ES
dc.description.references Grosse-Erdmann, K.-G., Peris, A.: Weakly mixing operators on topological vector spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, vol. 104, no. 2, pp. 413–426 (2010) es_ES
dc.description.references Grosse-Erdmann, K.-G., Peris-Manguillot, A.: Linear chaos, Universitext. Springer, London (2011) es_ES
dc.description.references Guckenheimer, J.: Sensitive dependence to initial conditions for one-dimensional maps. Commun. Math. Phys. 70(2), 133–160 (1979) es_ES
dc.description.references Halpern, J.D.: Bases in vector spaces and the axiom of choice. Proc. Am. Math. Soc. 17, 670–673 (1966) es_ES
dc.description.references He, W.H., Zhou, Z.L.: A topologically mixing system whose measure center is a singleton. Acta Math. Sin. (Chin. Ser.) 45(5), 929–934 (2002) es_ES
dc.description.references Huang, W., Khilko, D., Kolyada, S., Zhang, G.: Dynamical compactness and sensitivity. J. Differ. Equ. 260(9), 6800–6827 (2016) es_ES
dc.description.references Huang, W., Kolyada, S., Zhang, G.: Analogues of Auslander–Yorke theorems for multi-sensitivity. Ergod. Theory Dyn. Syst. 22, 1–15 (2016). doi: 10.1017/etds.2016.48 es_ES
dc.description.references Huang, W., Ye, X.: Devaney’s chaos or 2-scattering implies Li–Yorke’s chaos. Topol. Appl. 117(3), 259–272 (2002) es_ES
dc.description.references Kelley, J.L.: General topology. Graduate Texts in Mathematics, vol. 27. Springer, New York. Reprint of the 1955 edition [Van Nostrand, Toronto, ON] (1975) es_ES
dc.description.references Kolyada, S., Snoha, L., Trofimchuk, S.: Noninvertible minimal maps. Fund. Math. 168(2), 141–163 (2001) es_ES
dc.description.references Li, J.: Transitive points via Furstenberg family. Topol. Appl. 158(16), 2221–2231 (2011) es_ES
dc.description.references Li, J., Ye, X.D.: Recent development of chaos theory in topological dynamics. Acta Math. Sin. (Engl. Ser.) 32(1), 83–114 (2016) es_ES
dc.description.references Liu, H., Liao, L., Wang, L.: Thickly syndetical sensitivity of topological dynamical system. Discrete Dyn. Nat. Soc. (2014). Art. ID 583431, 4 es_ES
dc.description.references Moothathu, T.K.S.: Stronger forms of sensitivity for dynamical systems. Nonlinearity 20(9), 2115–2126 (2007) es_ES
dc.description.references Mycielski, J.: Independent sets in topological algebras. Fund. Math. 55, 139–147 (1964) es_ES
dc.description.references Oprocha, P., Zhang, G.: On local aspects of topological weak mixing in dimension one and beyond. Stud. Math. 202(3), 261–288 (2011) es_ES
dc.description.references Oprocha, P., Zhang, G.: On local aspects of topological weak mixing, sequence entropy and chaos. Ergod. Theory Dyn. Syst. 34(5), 1615–1639 (2014) es_ES
dc.description.references Petersen, K.E.: Disjointness and weak mixing of minimal sets. Proc. Am. Math. Soc. 24, 278–280 (1970) es_ES
dc.description.references Read, C.J.: The invariant subspace problem for a class of Banach spaces. II. Hypercyclic operators. Isr. J. Math. 63(1), 1–40 (1988) es_ES
dc.description.references Ruelle, D.: Dynamical systems with turbulent behavior. In: Mathematical problems in theoretical physics (Proc. Internat. Conf., Univ. Rome, Rome, 1977), Lecture Notes in Phys., vol. 80, pp. 341–360. Springer, Berlin (1978) es_ES
dc.description.references Šarkovskiĭ, A.N.: Continuous mapping on the limit points of an iteration sequence. Ukrain. Mat. Ž. 18(5), 127–130 (1966) es_ES
dc.description.references Weiss, B.: A survey of generic dynamics. Descriptive set theory and dynamical systems (Marseille-Luminy, 1996), London Math. Soc. Lecture Note Ser., vol. 277, pp. 273–291. Cambridge Univ. Press, Cambridge (2000) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem