Mostrar el registro sencillo del ítem
dc.contributor.author | Defant, A. | es_ES |
dc.contributor.author | García, Domingo | es_ES |
dc.contributor.author | Maestre, Manuel | es_ES |
dc.contributor.author | Sevilla Peris, Pablo | es_ES |
dc.date.accessioned | 2020-07-04T03:31:50Z | |
dc.date.available | 2020-07-04T03:31:50Z | |
dc.date.issued | 2018-12 | es_ES |
dc.identifier.issn | 0208-6573 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/147422 | |
dc.description.abstract | [EN] A classical result of Harald Bohr linked the study of convergent and bounded Dirichlet series on the right half plane with bounded holomorphic functions on the open unit ball of the space c(0) f complex null sequences. Our aim here is to show that many questions in Dirichlet series have very natural solutions when, following Bohr's idea, we translate these to the infinite dimensional setting. Some are new proofs and other new results obtained by using that point of view. | es_ES |
dc.description.sponsorship | The authors were supported by MINECO and FEDER Project MTM2017-83262-C2-1-P. The second and third authors were also supported by Project Prometeo/2017/102 of the Generalitat Valenciana. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Adam Mickiewicz University | es_ES |
dc.relation.ispartof | Functiones et Approximatio Commentarii Mathematici | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Dirichlet series | es_ES |
dc.subject | Bohr transform | es_ES |
dc.subject | Holomorphic function | es_ES |
dc.subject | Banach space | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Dirichlet series from the infinite dimensional point of view | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.7169/facm/1741 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F102/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y APLICACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83262-C2-1-P/ES/ANALISIS COMPLEJO Y GEOMETRIA EN ESPACIOS DE BANACH/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Defant, A.; García, D.; Maestre, M.; Sevilla Peris, P. (2018). Dirichlet series from the infinite dimensional point of view. Functiones et Approximatio Commentarii Mathematici. 59(2):285-304. https://doi.org/10.7169/facm/1741 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.7169/facm/1741 | es_ES |
dc.description.upvformatpinicio | 285 | es_ES |
dc.description.upvformatpfin | 304 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 59 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\384924 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |