- -

Surface Modification of Ti-35Nb-10Ta-1.5Fe by the Double Acid-Etching Process

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Surface Modification of Ti-35Nb-10Ta-1.5Fe by the Double Acid-Etching Process

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lario, Joan es_ES
dc.contributor.author Amigó Mata, A. es_ES
dc.contributor.author Segovia-López, Francisco es_ES
dc.contributor.author Amigó, Vicente es_ES
dc.date.accessioned 2020-07-04T03:32:09Z
dc.date.available 2020-07-04T03:32:09Z
dc.date.issued 2018-03-26 es_ES
dc.identifier.uri http://hdl.handle.net/10251/147432
dc.description.abstract [EN] Surface topography and composition influence the osteoblastic proliferation and osseointegration rates, which favor the biomechanical stability of bone anchoring and implants. In recent years, beta titanium alloys have been developed, and are composed of biocompatible elements, have low elastic modulus, high corrosion resistance, and mechanical properties to improve the long performance behavior of biomaterials. In the present research, the influence of the acid-etching process was studied in Ti6Al4V ELI and Ti35Nb10Ta1.5Fe. Samples were etched in a two-step acid treatment. Surface roughness parameters were quantified under a confocal microscope, topography was studied by scanning electron microscopy, and surface composition was analyzed with energy dispersive X-ray spectroscopy. The results revealed that the two-step acid treatment changes the topography of the ß alloy, increases the surface area, and changes the chemical composition of the surface. Two differentiated regions were identified in the Ti35Nb10Ta1.5Fe alloy after the acid-etching process: The ¿ + ß region with higher values of mean roughness due to the lower chemical resistance of this region; and the ß region with lower values of roughness parameters. es_ES
dc.description.sponsorship The authors wish to thank the Spanish Ministry of Economy and Competitiveness for the financial support of Research Project MAT2014-53764-C3-1-R, the Generalitat Valenciana for support through PROMETEO 2016/040, the European Commission via FEDER funds that have allowed the purchase of equipment for research purposes and for the Microscopy Service at the Polytechnic University of Valencia. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Materials es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Titanium alloys es_ES
dc.subject Acid etching es_ES
dc.subject Surface roughness es_ES
dc.subject Topography es_ES
dc.subject Ti-Nb-Ta-Fe es_ES
dc.subject Beta alloy es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Surface Modification of Ti-35Nb-10Ta-1.5Fe by the Double Acid-Etching Process es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ma11040494 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2014-53764-C3-1-R/ES/ESTUDIO DEL COMPORTAMIENTO TRIBO-ELECTROQUIMICO EN NUEVAS ALEACIONES DE TITANIO DE BAJO MODULO Y SU MODIFICACION SUPERFICIAL PARA APLICACIONES BIOMEDICAS./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F040/ES/DESARROLLO DE ALEACIONES DE TITANIO Y MATERIALES CERAMICOS AVANZADOS PARA APLICACIONES BIOMEDICAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Lario, J.; Amigó Mata, A.; Segovia-López, F.; Amigó, V. (2018). Surface Modification of Ti-35Nb-10Ta-1.5Fe by the Double Acid-Etching Process. Materials. 11(4):1-11. https://doi.org/10.3390/ma11040494 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ma11040494 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1996-1944 es_ES
dc.identifier.pmid 29587427 es_ES
dc.identifier.pmcid PMC5951340 es_ES
dc.relation.pasarela S\364227 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Lario-Femenía, J., Amigó-Mata, A., Vicente-Escuder, Á., Segovia-López, F., & Amigó-Borrás, V. (2016). Desarrollo de las aleaciones de titanio y tratamientos superficiales para incrementar la vida útil de los implantes. Revista de Metalurgia, 52(4), 084. doi:10.3989/revmetalm.084 es_ES
dc.description.references Kim, E.-S., Jeong, Y.-H., Choe, H.-C., & Brantley, W. A. (2013). Formation of titanium dioxide nanotubes on Ti–30Nb–xTa alloys by anodizing. Thin Solid Films, 549, 141-146. doi:10.1016/j.tsf.2013.08.058 es_ES
dc.description.references Okazaki, Y., & Gotoh, E. (2005). Comparison of metal release from various metallic biomaterials in vitro. Biomaterials, 26(1), 11-21. doi:10.1016/j.biomaterials.2004.02.005 es_ES
dc.description.references Niinomi, M. (1998). Mechanical properties of biomedical titanium alloys. Materials Science and Engineering: A, 243(1-2), 231-236. doi:10.1016/s0921-5093(97)00806-x es_ES
dc.description.references Niinomi, M. (2008). Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 1(1), 30-42. doi:10.1016/j.jmbbm.2007.07.001 es_ES
dc.description.references Long, M., & Rack, H. . (1998). Titanium alloys in total joint replacement—a materials science perspective. Biomaterials, 19(18), 1621-1639. doi:10.1016/s0142-9612(97)00146-4 es_ES
dc.description.references Eisenbarth, E., Velten, D., Müller, M., Thull, R., & Breme, J. (2004). Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials, 25(26), 5705-5713. doi:10.1016/j.biomaterials.2004.01.021 es_ES
dc.description.references Navarro Laboulais, J., Amigó Mata, A., Amigó Borrás, V., & Igual Muñoz, A. (2017). Electrochemical characterization and passivation behaviour of new beta-titanium alloys (Ti35Nb10Ta-xFe). Electrochimica Acta, 227, 410-418. doi:10.1016/j.electacta.2016.12.125 es_ES
dc.description.references Le Guéhennec, L., Soueidan, A., Layrolle, P., & Amouriq, Y. (2007). Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials, 23(7), 844-854. doi:10.1016/j.dental.2006.06.025 es_ES
dc.description.references Cremasco, A., Messias, A. D., Esposito, A. R., Duek, E. A. de R., & Caram, R. (2011). Effects of alloying elements on the cytotoxic response of titanium alloys. Materials Science and Engineering: C, 31(5), 833-839. doi:10.1016/j.msec.2010.12.013 es_ES
dc.description.references Matsuno, H. (2001). Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials, 22(11), 1253-1262. doi:10.1016/s0142-9612(00)00275-1 es_ES
dc.description.references Jeong, Y.-H., Kim, W.-G., Choe, H.-C., & Brantley, W. A. (2014). Control of nanotube shape and morphology on Ti–Nb(Ta)–Zr alloys by varying anodizing potential. Thin Solid Films, 572, 105-112. doi:10.1016/j.tsf.2014.09.057 es_ES
dc.description.references Aparicio, C., Padrós, A., & Gil, F.-J. (2011). In vivo evaluation of micro-rough and bioactive titanium dental implants using histometry and pull-out tests. Journal of the Mechanical Behavior of Biomedical Materials, 4(8), 1672-1682. doi:10.1016/j.jmbbm.2011.05.005 es_ES
dc.description.references Choe, H.-C., Kim, W.-G., & Jeong, Y.-H. (2010). Surface characteristics of HA coated Ti-30Ta-xZr and Ti-30Nb-xZr alloys after nanotube formation. Surface and Coatings Technology, 205, S305-S311. doi:10.1016/j.surfcoat.2010.08.020 es_ES
dc.description.references PYPEN, C. M. J. M., PLENK Jr, H., EBEL, M. F., SVAGERA, R., & WERNISCH, J. (1997). Journal of Materials Science Materials in Medicine, 8(12), 781-784. doi:10.1023/a:1018568830442 es_ES
dc.description.references Cochran, D. L., Schenk, R. K., Lussi, A., Higginbottom, F. L., & Buser, D. (1998). Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: A histometric study in the canine mandible. Journal of Biomedical Materials Research, 40(1), 1-11. doi:10.1002/(sici)1097-4636(199804)40:1<1::aid-jbm1>3.0.co;2-q es_ES
dc.description.references WEN, H. B., LIU, Q., DE WIJN, J. R., DE GROOT, K., & CUI, F. Z. (1998). Journal of Materials Science Materials in Medicine, 9(3), 121-128. doi:10.1023/a:1008859417664 es_ES
dc.description.references Duraccio, D., Mussano, F., & Faga, M. G. (2015). Biomaterials for dental implants: current and future trends. Journal of Materials Science, 50(14), 4779-4812. doi:10.1007/s10853-015-9056-3 es_ES
dc.description.references Frank, M. J., Walter, M. S., Lyngstadaas, S. P., Wintermantel, E., & Haugen, H. J. (2013). Hydrogen content in titanium and a titanium–zirconium alloy after acid etching. Materials Science and Engineering: C, 33(3), 1282-1288. doi:10.1016/j.msec.2012.12.027 es_ES
dc.description.references Gil, F. J., Manzanares, N., Badet, A., Aparicio, C., & Ginebra, M.-P. (2013). Biomimetic treatment on dental implants for short-term bone regeneration. Clinical Oral Investigations, 18(1), 59-66. doi:10.1007/s00784-013-0953-z es_ES
dc.description.references Ban, S., Iwaya, Y., Kono, H., & Sato, H. (2006). Surface modification of titanium by etching in concentrated sulfuric acid. Dental Materials, 22(12), 1115-1120. doi:10.1016/j.dental.2005.09.007 es_ES
dc.description.references KARAGEORGIOU, V., & KAPLAN, D. (2005). Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 26(27), 5474-5491. doi:10.1016/j.biomaterials.2005.02.002 es_ES
dc.description.references Le Guehennec, L., Lopez-Heredia, M.-A., Enkel, B., Weiss, P., Amouriq, Y., & Layrolle, P. (2008). Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomaterialia, 4(3), 535-543. doi:10.1016/j.actbio.2007.12.002 es_ES
dc.description.references ANSELME, K., & BIGERELLE, M. (2005). Topography effects of pure titanium substrates on human osteoblast long-term adhesion. Acta Biomaterialia, 1(2), 211-222. doi:10.1016/j.actbio.2004.11.009 es_ES
dc.description.references Anselme, K., Bigerelle, M., Noel, B., Dufresne, E., Judas, D., Iost, A., & Hardouin, P. (2000). Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. Journal of Biomedical Materials Research, 49(2), 155-166. doi:10.1002/(sici)1097-4636(200002)49:2<155::aid-jbm2>3.0.co;2-j es_ES
dc.description.references Herrero-Climent, M., Lázaro, P., Vicente Rios, J., Lluch, S., Marqués, M., Guillem-Martí, J., & Gil, F. J. (2013). Influence of acid-etching after grit-blasted on osseointegration of titanium dental implants: in vitro and in vivo studies. Journal of Materials Science: Materials in Medicine, 24(8), 2047-2055. doi:10.1007/s10856-013-4935-0 es_ES
dc.description.references Mendonça, G., Mendonça, D. B. S., Aragão, F. J. L., & Cooper, L. F. (2008). Advancing dental implant surface technology – From micron- to nanotopography. Biomaterials, 29(28), 3822-3835. doi:10.1016/j.biomaterials.2008.05.012 es_ES
dc.description.references Jayaraman, M., Meyer, U., Bühner, M., Joos, U., & Wiesmann, H.-P. (2004). Influence of titanium surfaces on attachment of osteoblast-like cells in vitro. Biomaterials, 25(4), 625-631. doi:10.1016/s0142-9612(03)00571-4 es_ES
dc.description.references Park, J. Y., & Davies, J. E. (2000). Red blood cell and platelet interactions with titanium implant surfaces. Clinical Oral Implants Research, 11(6), 530-539. doi:10.1034/j.1600-0501.2000.011006530.x es_ES
dc.description.references ELIAS, C., OSHIDA, Y., LIMA, J., & MULLER, C. (2008). Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque. Journal of the Mechanical Behavior of Biomedical Materials, 1(3), 234-242. doi:10.1016/j.jmbbm.2007.12.002 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem