- -

MRI white matter lesion segmentation using an ensemble of neural networks and overcomplete patch-based voting

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

MRI white matter lesion segmentation using an ensemble of neural networks and overcomplete patch-based voting

Show full item record

Manjón Herrera, JV.; Coupe, P.; Raniga, P.; Xia, Y.; Desmond, P.; Fripp, J.; Salvado, O. (2018). MRI white matter lesion segmentation using an ensemble of neural networks and overcomplete patch-based voting. Computerized Medical Imaging and Graphics. 69:43-51. https://doi.org/10.1016/j.compmedimag.2018.05.001

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/147544

Files in this item

Item Metadata

Title: MRI white matter lesion segmentation using an ensemble of neural networks and overcomplete patch-based voting
Author: Manjón Herrera, José Vicente Coupe, Pierrick Raniga, Parnesh Xia, Ying Desmond, Patricia Fripp, Jurgen Salvado, Olivier
UPV Unit: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Issued date:
Abstract:
[EN] Accurate quantification of white matter hyperintensities (WMH) from Magnetic Resonance Imaging (MRI) is a valuable tool for the analysis of normal brain ageing or neurodegeneration. Reliable automatic extraction of ...[+]
Subjects: Lesion segmentation , MRI , Brain , Patch-Based , Neural network , Ensemble
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Computerized Medical Imaging and Graphics. (issn: 0895-6111 )
DOI: 10.1016/j.compmedimag.2018.05.001
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.compmedimag.2018.05.001
Project ID:
UPV/PAID-00-15
ANR/ANR-10-LABX-57
ANR/ANR-10-IDEX-03-02
info:eu-repo/grantAgreement/MINECO//TIN2013-43457-R/ES/CARACTERIZACION DE FIRMAS BIOLOGICAS DE GLIOBLASTOMAS MEDIANTE MODELOS NO-SUPERVISADOS DE PREDICCION ESTRUCTURADA BASADOS EN BIOMARCADORES DE IMAGEN/
Thanks:
This research has been done thanks to the Australian distinguished visiting professor grant from the CSIRO (Commonwealth Scientific and Industrial Research Organisation) and the Spanish "Programa de apoyo a la investigacion ...[+]
Type: Artículo

recommendations

 

This item appears in the following Collection(s)

Show full item record