- -

Probabilistic Worst-Case Timing Analysis: Taxonomy and Comprehensive Survey

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


Probabilistic Worst-Case Timing Analysis: Taxonomy and Comprehensive Survey

Show full item record

Cazorla, FJ.; Kosmidis, L.; Mezzetti, E.; Hernández Luz, C.; Abella, J.; Vardanega, T. (2019). Probabilistic Worst-Case Timing Analysis: Taxonomy and Comprehensive Survey. ACM Computing Surveys. 52(1):1-35. https://doi.org/10.1145/3301283

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/147545

Files in this item

Item Metadata

Title: Probabilistic Worst-Case Timing Analysis: Taxonomy and Comprehensive Survey
Author: Cazorla, Francisco J. Kosmidis, L. Mezzetti, E. Hernández Luz, Carles Abella, Jaume Vardanega, Tullio
UPV Unit: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Issued date:
[EN] The unabated increase in the complexity of the hardware and software components of modern embedded real-time systems has given momentum to a host of research in the use of probabilistic and statistical techniques for ...[+]
Subjects: Worst-case execution time , Probabilistic analysis
Copyrigths: Reserva de todos los derechos
ACM Computing Surveys. (issn: 0360-0300 )
DOI: 10.1145/3301283
Association for Computing Machinery
Publisher version: https://doi.org/10.1145/3301283
Project ID:
info:eu-repo/grantAgreement/EC/H2020/772773/EU/Sustainable Performance for High-Performance Embedded Computing Systems/
info:eu-repo/grantAgreement/MINECO//TIN2015-65316-P/ES/COMPUTACION DE ALTAS PRESTACIONES VII/
Description: "© ACM, 2019. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Computing Surveys, {VOL 52, ISS 1, (February 2019)} https://dl.acm.org/doi/10.1145/3301283"
This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P, the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation ...[+]
Type: Artículo



This item appears in the following Collection(s)

Show full item record