Mostrar el registro sencillo del ítem
dc.contributor.author | Podolean, Iunia | es_ES |
dc.contributor.author | Cojocaru, Bogdan | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.contributor.author | Teodorescu, Christian | es_ES |
dc.contributor.author | Parvulescu, Vasile I. | es_ES |
dc.contributor.author | Coman, Simona M. | es_ES |
dc.date.accessioned | 2020-07-07T03:33:39Z | |
dc.date.available | 2020-07-07T03:33:39Z | |
dc.date.issued | 2018-11 | es_ES |
dc.identifier.issn | 1022-5528 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/147546 | |
dc.description.abstract | [EN] Ru@MNP-MWCNT catalysts were obtained via functionalization of nanostructured carbon-based carriers (ie, MWCNT) with base molecules (ie, 2-aminophenol and ethylenediamine) followed by the complexation with RuCl3. These structures demonstrated a highly efficient behavior for the selective wet oxidation of levulinic acid and glucose to succinic acid. However, to ensure an easy recovery and high recyclability the MWCNTs nanotubes were modified by incorporation of super-paramagnetic Fe3O4 nanoparticles into porous structure. Besides the catalytic performances the resulted composites showed a good mechanical resistance. | es_ES |
dc.description.sponsorship | Authors are gratefully to Giuliana Aquilanti and Luca Olivi, Elettra Sincrotrone Trieste, S.S. 14km 163,5, Area Science Park, 34149 Basovizza-Trieste, Italy for XANES measurements. Vasile I. Parvulescu kindly acknowledges UEFISCDI for financial support (project PN-III-P4-ID-PCE-2016-0146, Nr. 121/2017 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Topics in Catalysis | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Cationic ruthenium | es_ES |
dc.subject | Multi-wall carbon nanotubes (MWCNTs) | es_ES |
dc.subject | Magnetic nanoparticles (MNP) | es_ES |
dc.subject | Catalytic wet oxidation (CWO) | es_ES |
dc.subject | Glucose | es_ES |
dc.subject | Succinic acid | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | From Glucose Direct to Succinic Acid: an Optimized Recyclable Bi-functional Ru@MNP-MWCNT Catalyst | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11244-018-1012-4 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UEFISCDI//PN-III-P4-ID-PCE-2016-0146 121%2F2017/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Podolean, I.; Cojocaru, B.; García Gómez, H.; Teodorescu, C.; Parvulescu, VI.; Coman, SM. (2018). From Glucose Direct to Succinic Acid: an Optimized Recyclable Bi-functional Ru@MNP-MWCNT Catalyst. Topics in Catalysis. 61(18-19):1866-1876. https://doi.org/10.1007/s11244-018-1012-4 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s11244-018-1012-4 | es_ES |
dc.description.upvformatpinicio | 1866 | es_ES |
dc.description.upvformatpfin | 1876 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 61 | es_ES |
dc.description.issue | 18-19 | es_ES |
dc.relation.pasarela | S\382655 | es_ES |
dc.contributor.funder | Executive Agency for Higher Education, Scientific Research, Development and Innovation Funding, Rumanía | es_ES |
dc.description.references | Kamm B (2007) Production of platform chemicals and synthesis gas from biomass. Angew Chem Int Ed 46:5056–5058 | es_ES |
dc.description.references | Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107(6):2411–2502 | es_ES |
dc.description.references | Shylesh S, Schünemann V, Thiel WR (2010) Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 49:3428–3459 | es_ES |
dc.description.references | McCafferty E, Wightman JP (1998) Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method. Surf Interface Anal 26:549–564 | es_ES |
dc.description.references | Gleeson O, Tekoriute R, Gun’Ko YK, Connon SJ (2009) The first magnetic nanoparticle-supported chiral DMAP analogue: highly enantioselective acylation and excellent recyclability. Chem A 15:5669–5673 | es_ES |
dc.description.references | Wang BG, Ma BC, Wang Q, Wang W (2010) Superparamagnetic nanoparticle-supported (S)-diphenyl-prolinol trimethylsilyl ether as a recyclable catalyst for asymmetric Michael addition in water. Adv Synth Catal 352:2923–2928 | es_ES |
dc.description.references | Hu A, Liu S, Lin W (2012) Immobilization of chiral catalysts on magnetite nanoparticles for highly enantioselective asymmetric hydrogenation of aromatic ketones. RSC Adv 2:2576–2580 | es_ES |
dc.description.references | Shokouhimehr M, Piao Y, Kim J, Jang Y, Hyeon T (2007) A magnetically recyclable nanocomposite catalyst for olefin epoxidation. Angew Chem Int Ed 46:7039–7043 | es_ES |
dc.description.references | Jin M-J, Lee D-H (2010) A practical heterogeneous catalyst for the Suzuki, Sonogashira, and Stille coupling reactions of unreactive aryl chlorides. Angew Chem Int Ed 49:1119–1122 | es_ES |
dc.description.references | Xu H-J, Wan X, Shen Y-Y, Xu S, Feng Y-S (2012) Magnetic nano-Fe3O4-supported 1-benzyl-1,4-dihydronicotinamide (BNAH): synthesis and application in the catalytic reduction of α, β-epoxy ketones. Org Lett 14:1210–1213 | es_ES |
dc.description.references | Yoon T-J, Lee W, Oh Y-S, Lee J-K (2003) Magnetic nanoparticles as a catalyst vehicle for simple and easy recycling. New J Chem 27:227–229 | es_ES |
dc.description.references | Podolean I, Kuncser V, Gheorghe N, Macovei D, Parvulescu VI, Coman SM (2013) Ru-based magnetic nanoparticles (MNP) for succinic acid synthesis from levulinic acid. Green Chem 15(11):3077–3082 | es_ES |
dc.description.references | Podolean I, Rizescu C, Bala C, Rotariu L, Parvulescu VI, Coman SM, Garcia H (2016) Unprecedented catalytic wet oxidation of glucose to succinic acid induced by the addition of n-butylamine to a RuIII catalyst. ChemSusChem 9(17):2307–2311 | es_ES |
dc.description.references | Rizescu C, Podolean I, Albero J, Parvulescu VI, Coman SM, Bucur C, Puche M, Garcia H (2017) N-doped graphene as a metal-free catalyst for glucose oxidation to succinic acid. Green Chem 19:1999–2005 | es_ES |
dc.description.references | Rizescu C, Podolean I, Cojocaru B, Parvulescu VI, Coman SM, Albero J, Garcia H (2017) RuCl3 supported on N-doped graphene as a reusable catalyst for the one-step glucose oxidation to succinic acid. ChemCatChem 9(17):3314–3321 | es_ES |
dc.description.references | Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136 | es_ES |
dc.description.references | Coleman JN, Khan U, Balu WJ, Gunko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44:1624–1652 | es_ES |
dc.description.references | Chen J, Wang M, Liu B, Fan Z, Cui K, Kuang Y (2006) Platinum catalysts prepared with functional carbon nanotube defects and its improved catalytic performance for methanol oxidation. J Phys Chem B 110:11775–11779 | es_ES |
dc.description.references | Domínguez-Domínguez S, Berenguer-Murcia A, Pradhan BK, Linares-Solano A, Cazorla-Amorós D (2008) Semihydrogenation of phenylacetylene catalyzed by palladium nanoparticles supported on carbon materials. J Phys Chem C 112:3827–3834 | es_ES |
dc.description.references | Baleizão C, Gigante B, García H, Corma A (2004) Chiral vanadyl salen complex anchored on supports as recoverable catalysts for the enantioselective cyanosilylation of aldehydes. Comparison among silica, single wall carbon nanotube, activated carbon and imidazolium ion as support. Tetrahedron 60:10461–10468 | es_ES |
dc.description.references | Baleizão C, Gigante B, García H, Corma A (2004) Vanadyl salen complexes covalently anchored to single-wall carbon nanotubes as heterogeneous catalysts for the cyanosilylation of aldehydes. J Catal 221:77–84 | es_ES |
dc.description.references | Goh WJ, Makam VS, Hu J, Kang L, Zheng M, Yoong SL, Udalagama CNB, Pastorin G (2012) Iron oxide filled magnetic carbon nanotube–enzyme conjugates for recycling of amyloglucosidase: toward useful applications in biofuel production process. Langmuir 28:16864–16873 | es_ES |
dc.description.references | Li JH, Hong RY, Luo GH, Zheng Y, Li HZ, Wei DG (2010) An easy approach to encapsulating Fe3O4 nanoparticles in multiwalled carbon nanotubes. New Carbon Mater 25:192–198 | es_ES |
dc.description.references | Podolean I, Anita F, Garcia H, Parvulescu VI, Coman SM (2017) Efficient magnetic recoverable acid-functionalized-carbon catalysts for starch valorization to multiple bio-chemicals. Catal Today 279:45–55 | es_ES |
dc.description.references | Chen Y, Gu H (2012) Microwave assisted fast fabrication of Fe3O4-MWCNTs nanocomposites and their application as MRI contrast agents. Mater Lett 67:49–51 | es_ES |
dc.description.references | Wu L, Dutta S, Mascal M (2015) Efficient, chemical-catalytic approach to the production of 3-hydroxypropanoic acid by oxidation of biomass-derived levulinic acid with hydrogen peroxide. ChemSusChem 8(7):1167–1169 | es_ES |
dc.description.references | Parvulescu VI, Coman S, Palade P, Macovei D, Teodorescu CM, Filoti G, Molina R, Poncelet G, Wagner FE (1999) Reducibility of ruthenium in relation with zeolite structure. Appl Surf Sci 141:164–176 | es_ES |
dc.description.references | Böttcher W, Brown GM, Sutin N (1979) Electron-transfer reactions involving the aquoruthenium(II)-aquoruthenium(III) couple. Inorg Chem 18:1447–1451 | es_ES |
dc.description.references | Getty K, Delgado-Jaime MU, Kennepohl P (2008) Assignment of pre-edge features in the Ru K-edge X-ray absorption spectra of organometallic ruthenium complexes. Inorg Chim Acta 361:1059–1065 | es_ES |
dc.description.references | Westre TE, Kennepohl P, DeWitt JG, Hedman B, Hodgson KO, Solomon EI (1997) A multiplet analysis of Fe K-edge 1 s → 3d pre-edge features of iron complexes. J Am Chem Soc 119:6297–6314 | es_ES |
dc.description.references | Hummer AA, Heffeter P, Berger W, Filipits M, Batchelor D, Büchel GE, Jakupec MA, Keppler BK, Rompel A (2013) X-ray absorption near edge structure spectroscopy to resolve the in vivo chemistry of the redox-active indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019). J Med Chem 56:1182–1196 | es_ES |
dc.description.references | Dakkach M, López MI, Romero I, Rodríguez M, Atlamsani A, Parella T, Fontrodona X, Llobet A (2010) New Ru(II) complexes with anionic and neutral N-donor ligands as epoxidation catalysts: an evaluation of geometrical and electronic effects. Inorg Chem 49:7072–7079 | es_ES |
dc.description.references | Mallat T, Baiker A (2004) Oxidation of alcohols with molecular oxygen on solid catalysts. Chem Rev 104:3037–3058 | es_ES |
dc.description.references | Esnaashari F, Moghadam M, Mirkhani V, Tangestaninejad S, Mohammadpoor-Baltork I, Reza Khosropour A, Zakeri M (2012) Multi-wall carbon nanotubes supported molybdenyl acetylacetonate: efficient and highly reusable catalysts for epoxidation of alkenes with tert-butyl hydroperoxide. Mater Chem Phys 137:69–75 | es_ES |