- -

From Glucose Direct to Succinic Acid: an Optimized Recyclable Bi-functional Ru@MNP-MWCNT Catalyst

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

From Glucose Direct to Succinic Acid: an Optimized Recyclable Bi-functional Ru@MNP-MWCNT Catalyst

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Podolean, Iunia es_ES
dc.contributor.author Cojocaru, Bogdan es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.contributor.author Teodorescu, Christian es_ES
dc.contributor.author Parvulescu, Vasile I. es_ES
dc.contributor.author Coman, Simona M. es_ES
dc.date.accessioned 2020-07-07T03:33:39Z
dc.date.available 2020-07-07T03:33:39Z
dc.date.issued 2018-11 es_ES
dc.identifier.issn 1022-5528 es_ES
dc.identifier.uri http://hdl.handle.net/10251/147546
dc.description.abstract [EN] Ru@MNP-MWCNT catalysts were obtained via functionalization of nanostructured carbon-based carriers (ie, MWCNT) with base molecules (ie, 2-aminophenol and ethylenediamine) followed by the complexation with RuCl3. These structures demonstrated a highly efficient behavior for the selective wet oxidation of levulinic acid and glucose to succinic acid. However, to ensure an easy recovery and high recyclability the MWCNTs nanotubes were modified by incorporation of super-paramagnetic Fe3O4 nanoparticles into porous structure. Besides the catalytic performances the resulted composites showed a good mechanical resistance. es_ES
dc.description.sponsorship Authors are gratefully to Giuliana Aquilanti and Luca Olivi, Elettra Sincrotrone Trieste, S.S. 14km 163,5, Area Science Park, 34149 Basovizza-Trieste, Italy for XANES measurements. Vasile I. Parvulescu kindly acknowledges UEFISCDI for financial support (project PN-III-P4-ID-PCE-2016-0146, Nr. 121/2017 es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Topics in Catalysis es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cationic ruthenium es_ES
dc.subject Multi-wall carbon nanotubes (MWCNTs) es_ES
dc.subject Magnetic nanoparticles (MNP) es_ES
dc.subject Catalytic wet oxidation (CWO) es_ES
dc.subject Glucose es_ES
dc.subject Succinic acid es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title From Glucose Direct to Succinic Acid: an Optimized Recyclable Bi-functional Ru@MNP-MWCNT Catalyst es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11244-018-1012-4 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UEFISCDI//PN-III-P4-ID-PCE-2016-0146 121%2F2017/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Podolean, I.; Cojocaru, B.; García Gómez, H.; Teodorescu, C.; Parvulescu, VI.; Coman, SM. (2018). From Glucose Direct to Succinic Acid: an Optimized Recyclable Bi-functional Ru@MNP-MWCNT Catalyst. Topics in Catalysis. 61(18-19):1866-1876. https://doi.org/10.1007/s11244-018-1012-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s11244-018-1012-4 es_ES
dc.description.upvformatpinicio 1866 es_ES
dc.description.upvformatpfin 1876 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 61 es_ES
dc.description.issue 18-19 es_ES
dc.relation.pasarela S\382655 es_ES
dc.contributor.funder Executive Agency for Higher Education, Scientific Research, Development and Innovation Funding, Rumanía es_ES
dc.description.references Kamm B (2007) Production of platform chemicals and synthesis gas from biomass. Angew Chem Int Ed 46:5056–5058 es_ES
dc.description.references Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107(6):2411–2502 es_ES
dc.description.references Shylesh S, Schünemann V, Thiel WR (2010) Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 49:3428–3459 es_ES
dc.description.references McCafferty E, Wightman JP (1998) Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method. Surf Interface Anal 26:549–564 es_ES
dc.description.references Gleeson O, Tekoriute R, Gun’Ko YK, Connon SJ (2009) The first magnetic nanoparticle-supported chiral DMAP analogue: highly enantioselective acylation and excellent recyclability. Chem A 15:5669–5673 es_ES
dc.description.references Wang BG, Ma BC, Wang Q, Wang W (2010) Superparamagnetic nanoparticle-supported (S)-diphenyl-prolinol trimethylsilyl ether as a recyclable catalyst for asymmetric Michael addition in water. Adv Synth Catal 352:2923–2928 es_ES
dc.description.references Hu A, Liu S, Lin W (2012) Immobilization of chiral catalysts on magnetite nanoparticles for highly enantioselective asymmetric hydrogenation of aromatic ketones. RSC Adv 2:2576–2580 es_ES
dc.description.references Shokouhimehr M, Piao Y, Kim J, Jang Y, Hyeon T (2007) A magnetically recyclable nanocomposite catalyst for olefin epoxidation. Angew Chem Int Ed 46:7039–7043 es_ES
dc.description.references Jin M-J, Lee D-H (2010) A practical heterogeneous catalyst for the Suzuki, Sonogashira, and Stille coupling reactions of unreactive aryl chlorides. Angew Chem Int Ed 49:1119–1122 es_ES
dc.description.references Xu H-J, Wan X, Shen Y-Y, Xu S, Feng Y-S (2012) Magnetic nano-Fe3O4-supported 1-benzyl-1,4-dihydronicotinamide (BNAH): synthesis and application in the catalytic reduction of α, β-epoxy ketones. Org Lett 14:1210–1213 es_ES
dc.description.references Yoon T-J, Lee W, Oh Y-S, Lee J-K (2003) Magnetic nanoparticles as a catalyst vehicle for simple and easy recycling. New J Chem 27:227–229 es_ES
dc.description.references Podolean I, Kuncser V, Gheorghe N, Macovei D, Parvulescu VI, Coman SM (2013) Ru-based magnetic nanoparticles (MNP) for succinic acid synthesis from levulinic acid. Green Chem 15(11):3077–3082 es_ES
dc.description.references Podolean I, Rizescu C, Bala C, Rotariu L, Parvulescu VI, Coman SM, Garcia H (2016) Unprecedented catalytic wet oxidation of glucose to succinic acid induced by the addition of n-butylamine to a RuIII catalyst. ChemSusChem 9(17):2307–2311 es_ES
dc.description.references Rizescu C, Podolean I, Albero J, Parvulescu VI, Coman SM, Bucur C, Puche M, Garcia H (2017) N-doped graphene as a metal-free catalyst for glucose oxidation to succinic acid. Green Chem 19:1999–2005 es_ES
dc.description.references Rizescu C, Podolean I, Cojocaru B, Parvulescu VI, Coman SM, Albero J, Garcia H (2017) RuCl3 supported on N-doped graphene as a reusable catalyst for the one-step glucose oxidation to succinic acid. ChemCatChem 9(17):3314–3321 es_ES
dc.description.references Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136 es_ES
dc.description.references Coleman JN, Khan U, Balu WJ, Gunko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44:1624–1652 es_ES
dc.description.references Chen J, Wang M, Liu B, Fan Z, Cui K, Kuang Y (2006) Platinum catalysts prepared with functional carbon nanotube defects and its improved catalytic performance for methanol oxidation. J Phys Chem B 110:11775–11779 es_ES
dc.description.references Domínguez-Domínguez S, Berenguer-Murcia A, Pradhan BK, Linares-Solano A, Cazorla-Amorós D (2008) Semihydrogenation of phenylacetylene catalyzed by palladium nanoparticles supported on carbon materials. J Phys Chem C 112:3827–3834 es_ES
dc.description.references Baleizão C, Gigante B, García H, Corma A (2004) Chiral vanadyl salen complex anchored on supports as recoverable catalysts for the enantioselective cyanosilylation of aldehydes. Comparison among silica, single wall carbon nanotube, activated carbon and imidazolium ion as support. Tetrahedron 60:10461–10468 es_ES
dc.description.references Baleizão C, Gigante B, García H, Corma A (2004) Vanadyl salen complexes covalently anchored to single-wall carbon nanotubes as heterogeneous catalysts for the cyanosilylation of aldehydes. J Catal 221:77–84 es_ES
dc.description.references Goh WJ, Makam VS, Hu J, Kang L, Zheng M, Yoong SL, Udalagama CNB, Pastorin G (2012) Iron oxide filled magnetic carbon nanotube–enzyme conjugates for recycling of amyloglucosidase: toward useful applications in biofuel production process. Langmuir 28:16864–16873 es_ES
dc.description.references Li JH, Hong RY, Luo GH, Zheng Y, Li HZ, Wei DG (2010) An easy approach to encapsulating Fe3O4 nanoparticles in multiwalled carbon nanotubes. New Carbon Mater 25:192–198 es_ES
dc.description.references Podolean I, Anita F, Garcia H, Parvulescu VI, Coman SM (2017) Efficient magnetic recoverable acid-functionalized-carbon catalysts for starch valorization to multiple bio-chemicals. Catal Today 279:45–55 es_ES
dc.description.references Chen Y, Gu H (2012) Microwave assisted fast fabrication of Fe3O4-MWCNTs nanocomposites and their application as MRI contrast agents. Mater Lett 67:49–51 es_ES
dc.description.references Wu L, Dutta S, Mascal M (2015) Efficient, chemical-catalytic approach to the production of 3-hydroxypropanoic acid by oxidation of biomass-derived levulinic acid with hydrogen peroxide. ChemSusChem 8(7):1167–1169 es_ES
dc.description.references Parvulescu VI, Coman S, Palade P, Macovei D, Teodorescu CM, Filoti G, Molina R, Poncelet G, Wagner FE (1999) Reducibility of ruthenium in relation with zeolite structure. Appl Surf Sci 141:164–176 es_ES
dc.description.references Böttcher W, Brown GM, Sutin N (1979) Electron-transfer reactions involving the aquoruthenium(II)-aquoruthenium(III) couple. Inorg Chem 18:1447–1451 es_ES
dc.description.references Getty K, Delgado-Jaime MU, Kennepohl P (2008) Assignment of pre-edge features in the Ru K-edge X-ray absorption spectra of organometallic ruthenium complexes. Inorg Chim Acta 361:1059–1065 es_ES
dc.description.references Westre TE, Kennepohl P, DeWitt JG, Hedman B, Hodgson KO, Solomon EI (1997) A multiplet analysis of Fe K-edge 1 s → 3d pre-edge features of iron complexes. J Am Chem Soc 119:6297–6314 es_ES
dc.description.references Hummer AA, Heffeter P, Berger W, Filipits M, Batchelor D, Büchel GE, Jakupec MA, Keppler BK, Rompel A (2013) X-ray absorption near edge structure spectroscopy to resolve the in vivo chemistry of the redox-active indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019). J Med Chem 56:1182–1196 es_ES
dc.description.references Dakkach M, López MI, Romero I, Rodríguez M, Atlamsani A, Parella T, Fontrodona X, Llobet A (2010) New Ru(II) complexes with anionic and neutral N-donor ligands as epoxidation catalysts: an evaluation of geometrical and electronic effects. Inorg Chem 49:7072–7079 es_ES
dc.description.references Mallat T, Baiker A (2004) Oxidation of alcohols with molecular oxygen on solid catalysts. Chem Rev 104:3037–3058 es_ES
dc.description.references Esnaashari F, Moghadam M, Mirkhani V, Tangestaninejad S, Mohammadpoor-Baltork I, Reza Khosropour A, Zakeri M (2012) Multi-wall carbon nanotubes supported molybdenyl acetylacetonate: efficient and highly reusable catalysts for epoxidation of alkenes with tert-butyl hydroperoxide. Mater Chem Phys 137:69–75 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem