- -

Validation and Opportunities of Electrocardiographic Imaging: From Technical chievements to Clinical Applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Validation and Opportunities of Electrocardiographic Imaging: From Technical chievements to Clinical Applications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cluitmans, Matthijs es_ES
dc.contributor.author Brooks, D. es_ES
dc.contributor.author MacLeod, Rob S. es_ES
dc.contributor.author Dossel, Olaf es_ES
dc.contributor.author Guillem Sánchez, María Salud es_ES
dc.contributor.author van Dam, P. es_ES
dc.contributor.author Svehlikova, Jana es_ES
dc.contributor.author He, Bin es_ES
dc.contributor.author Sapp, John es_ES
dc.contributor.author Wang, Liwei es_ES
dc.contributor.author Bear, Laura es_ES
dc.date.accessioned 2020-07-08T03:32:15Z
dc.date.available 2020-07-08T03:32:15Z
dc.date.issued 2018-09-20 es_ES
dc.identifier.issn 1664-042X es_ES
dc.identifier.uri http://hdl.handle.net/10251/147627
dc.description.abstract [EN] Electrocardiographic imaging (ECGI) reconstructs the electrical activity of the heart from a dense array of body-surface electrocardiograms and a patient-specific heart-torso geometry. Depending on how it is formulated, ECGI allows the reconstruction of the activation and recovery sequence of the heart, the origin of premature beats or tachycardia, the anchors/hotspots of re-entrant arrhythmias and other electrophysiological quantities of interest. Importantly, these quantities are directly and non-invasively reconstructed in a digitized model of the patient's three-dimensional heart, which has led to clinical interest in ECGI's ability to personalize diagnosis and guide therapy. Despite considerable development over the last decades, validation of ECGI is challenging. Firstly, results depend considerably on implementation choices, which are necessary to deal with ECGI's ill-posed character. Secondly, it is challenging to obtain (invasive) ground truth data of high quality. In this review, we discuss the current status of ECGI validation as well as the major challenges remaining for complete adoption of ECGI in clinical practice. Specifically, showing clinical benefit is essential for the adoption of ECGI. Such benefit may lie in patient outcome improvement, workflow improvement, or cost reduction. Future studies should focus on these aspects to achieve broad adoption of ECGI, but only after the technical challenges have been solved for that specific application/pathology. We propose 'best' practices for technical validation and highlight collaborative efforts recently organized in this field. Continued interaction between engineers, basic scientists, and physicians remains essential to find a hybrid between technical achievements, pathological mechanisms insights, and clinical benefit, to evolve this powerful technique toward a useful role in clinical practice. es_ES
dc.description.sponsorship This study received financial support from the Hein Wellens Fonds, the Cardiovascular Research and Training Institute (CVRTI), the Nora Eccles Treadwell Foundation, the National Institute of General Medical Sciences of the National Institutes of Health (P41GM103545), the National Institutes of Health (NIH HL080093), the French government as part of the Investments of the Future program managed by the National Research Agency (ANR-10-IAHU-04), from the VEGA Grant Agency in Slovakia (2/0071/16), from the Slovak Research and Development Agency (APVV-14-0875), the Fondo Europeo de Desarrollo Regional (FEDER), the Instituto de Salud Carlos III (PI17/01106) and from Conselleria d'Educacio, Investigacio, Cultura i Esport de la Generalitat Valenciana (AICO/2018/267) and NIH grant (HL125998) and National Science Foundation (ACI-1350374). es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Physiology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject ECG imaging es_ES
dc.subject Validation es_ES
dc.subject Electrocardiography es_ES
dc.subject Electrophysiology es_ES
dc.subject Experiment es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Validation and Opportunities of Electrocardiographic Imaging: From Technical chievements to Clinical Applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fphys.2018.01305 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//P41GM103545/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//HL125998/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//HL080093/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-10-IAHU-0004/FR/L'Institut de Rythmologie et modélisation Cardiaque/LIRYC/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1350374/US/CAREER: Integrating Physical Models into Data-Driven Inference/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//PI17%2F01106/ES/Estratificación y tratamiento de la fibrilación auricular basada en los mecanismos de perpetuación de la arritmia/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2018%2F267/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Cluitmans, M.; Brooks, D.; Macleod, RS.; Dossel, O.; Guillem Sánchez, MS.; Van Dam, P.; Svehlikova, J.... (2018). Validation and Opportunities of Electrocardiographic Imaging: From Technical chievements to Clinical Applications. Frontiers in Physiology. 9. https://doi.org/10.3389/fphys.2018.01305 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fphys.2018.01305 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.identifier.pmid 30294281 es_ES
dc.identifier.pmcid PMC6158556 es_ES
dc.relation.pasarela S\384752 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES
dc.contributor.funder Stichting Hein Wellens Fonds es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder Nora Eccles Treadwell Foundation es_ES
dc.contributor.funder National Science Foundation, EEUU es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder Cardiovascular Research and Training Institute, EEUU es_ES
dc.contributor.funder National Institute of General Medical Sciences, EEUU es_ES
dc.contributor.funder Scientific Grant Agency, Eslovaquia es_ES
dc.contributor.funder Ministry of Education, Science, Research and Sport, República Eslovaca es_ES
dc.description.references Andrews, C. M., Srinivasan, N. T., Rosmini, S., Bulluck, H., Orini, M., Jenkins, S., … Rudy, Y. (2017). Electrical and Structural Substrate of Arrhythmogenic Right Ventricular Cardiomyopathy Determined Using Noninvasive Electrocardiographic Imaging and Late Gadolinium Magnetic Resonance Imaging. Circulation: Arrhythmia and Electrophysiology, 10(7). doi:10.1161/circep.116.005105 es_ES
dc.description.references Aras, K., Good, W., Tate, J., Burton, B., Brooks, D., Coll-Font, J., … MacLeod, R. (2015). Experimental Data and Geometric Analysis Repository—EDGAR. Journal of Electrocardiology, 48(6), 975-981. doi:10.1016/j.jelectrocard.2015.08.008 es_ES
dc.description.references Austen, W., Edwards, J., Frye, R., Gensini, G., Gott, V., Griffith, L., … Roe, B. (1975). A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation, 51(4), 5-40. doi:10.1161/01.cir.51.4.5 es_ES
dc.description.references Bayley, R. H., & Berry, P. M. (1962). The electrical field produced by the eccentric current dipole in the nonhomogeneous conductor. American Heart Journal, 63(6), 808-820. doi:10.1016/0002-8703(62)90065-0 es_ES
dc.description.references Bear, L. R., Huntjens, P. R., Walton, R. D., Bernus, O., Coronel, R., & Dubois, R. (2018). Cardiac electrical dyssynchrony is accurately detected by noninvasive electrocardiographic imaging. Heart Rhythm, 15(7), 1058-1069. doi:10.1016/j.hrthm.2018.02.024 es_ES
dc.description.references Bear, L. R., LeGrice, I. J., Sands, G. B., Lever, N. A., Loiselle, D. S., Paterson, D. J., … Smaill, B. H. (2018). How Accurate Is Inverse Electrocardiographic Mapping? Circulation: Arrhythmia and Electrophysiology, 11(5). doi:10.1161/circep.117.006108 es_ES
dc.description.references Berger, T., Fischer, G., Pfeifer, B., Modre, R., Hanser, F., Trieb, T., … Hintringer, F. (2006). Single-Beat Noninvasive Imaging of Cardiac Electrophysiology of Ventricular Pre-Excitation. Journal of the American College of Cardiology, 48(10), 2045-2052. doi:10.1016/j.jacc.2006.08.019 es_ES
dc.description.references Berger, T., Pfeifer, B., Hanser, F. F., Hintringer, F., Fischer, G., Netzer, M., … Seger, M. (2011). Single-Beat Noninvasive Imaging of Ventricular Endocardial and Epicardial Activation in Patients Undergoing CRT. PLoS ONE, 6(1), e16255. doi:10.1371/journal.pone.0016255 es_ES
dc.description.references Dubois, R., Pashaei, A., Duchateau, J., & Vigmond, E. (2016). Evaluation of Combined Noninvasive Electrocardiographic Imaging and Phase Mapping approach for Atrial Fibrillation: A Simulation Study. 2016 Computing in Cardiology Conference (CinC). doi:10.22489/cinc.2016.037-540 es_ES
dc.description.references Duchateau, J., Potse, M., & Dubois, R. (2017). Spatially Coherent Activation Maps for Electrocardiographic Imaging. IEEE Transactions on Biomedical Engineering, 64(5), 1149-1156. doi:10.1109/tbme.2016.2593003 es_ES
dc.description.references Erem, B., Brooks, D. H., van Dam, P. M., Stinstra, J. G., & MacLeod, R. S. (2011). Spatiotemporal estimation of activation times of fractionated ECGs on complex heart surfaces. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. doi:10.1109/iembs.2011.6091455 es_ES
dc.description.references Erem, B., van Dam, P. M., & Brooks, D. H. (2014). Identifying Model Inaccuracies and Solution Uncertainties in Noninvasive Activation-Based Imaging of Cardiac Excitation Using Convex Relaxation. IEEE Transactions on Medical Imaging, 33(4), 902-912. doi:10.1109/tmi.2014.2297952 es_ES
dc.description.references Erkapic, D., & Neumann, T. (2015). Ablation of Premature Ventricular Complexes Exclusively Guided by Three-Dimensional Noninvasive Mapping. Cardiac Electrophysiology Clinics, 7(1), 109-115. doi:10.1016/j.ccep.2014.11.010 es_ES
dc.description.references Everett, T. H., Lai-Chow Kok, Vaughn, R. H., Moorman, R., & Haines, D. E. (2001). Frequency domain algorithm for quantifying atrial fibrillation organization to increase defibrillation efficacy. IEEE Transactions on Biomedical Engineering, 48(9), 969-978. doi:10.1109/10.942586 es_ES
dc.description.references Faes, L., & Ravelli, F. (2007). A morphology-based approach to the evaluation of atrial fibrillation organization. IEEE Engineering in Medicine and Biology Magazine, 26(4), 59-67. doi:10.1109/memb.2007.384097 es_ES
dc.description.references Fitzpatrick, A. P., Gonzales, R. P., Lesh, M. D., odin, G. W., Lee, R. J., & Scheinman, M. M. (1994). New algorithm for the localization of accessory atrioventricular connections using a baseline electrocardiogram. Journal of the American College of Cardiology, 23(1), 107-116. doi:10.1016/0735-1097(94)90508-8 es_ES
dc.description.references Geselowitz, D. B. (1989). On the theory of the electrocardiogram. Proceedings of the IEEE, 77(6), 857-876. doi:10.1109/5.29327 es_ES
dc.description.references Geselowitz, D. B. (1992). Description of cardiac sources in anisotropic cardiac muscle. Journal of Electrocardiology, 25, 65-67. doi:10.1016/0022-0736(92)90063-6 es_ES
dc.description.references Ghanem, R. N., Jia, P., Ramanathan, C., Ryu, K., Markowitz, A., & Rudy, Y. (2005). Noninvasive Electrocardiographic Imaging (ECGI): Comparison to intraoperative mapping in patients. Heart Rhythm, 2(4), 339-354. doi:10.1016/j.hrthm.2004.12.022 es_ES
dc.description.references Ghosh, S., Rhee, E. K., Avari, J. N., Woodard, P. K., & Rudy, Y. (2008). Cardiac Memory in Patients With Wolff-Parkinson-White Syndrome. Circulation, 118(9), 907-915. doi:10.1161/circulationaha.108.781658 es_ES
dc.description.references Ghosh, S., Silva, J. N. A., Canham, R. M., Bowman, T. M., Zhang, J., Rhee, E. K., … Rudy, Y. (2011). Electrophysiologic substrate and intraventricular left ventricular dyssynchrony in nonischemic heart failure patients undergoing cardiac resynchronization therapy. Heart Rhythm, 8(5), 692-699. doi:10.1016/j.hrthm.2011.01.017 es_ES
dc.description.references Grace, A., Verma, A., & Willems, S. (2017). Dipole Density Mapping of Atrial Fibrillation. European Heart Journal, 38(1), 5-9. doi:10.1093/eurheartj/ehw585 es_ES
dc.description.references Dorset, D. L. (1996). Electron crystallography. Acta Crystallographica Section B Structural Science, 52(5), 753-769. doi:10.1107/s0108768196005599 es_ES
dc.description.references Haissaguerre, M., Hocini, M., Denis, A., Shah, A. J., Komatsu, Y., Yamashita, S., … Dubois, R. (2014). Driver Domains in Persistent Atrial Fibrillation. Circulation, 130(7), 530-538. doi:10.1161/circulationaha.113.005421 es_ES
dc.description.references HAISSAGUERRE, M., HOCINI, M., SHAH, A. J., DERVAL, N., SACHER, F., JAIS, P., & DUBOIS, R. (2013). Noninvasive Panoramic Mapping of Human Atrial Fibrillation Mechanisms: A Feasibility Report. Journal of Cardiovascular Electrophysiology, 24(6), 711-717. doi:10.1111/jce.12075 es_ES
dc.description.references Han, C., Pogwizd, S. M., Killingsworth, C. R., & He, B. (2011). Noninvasive imaging of three-dimensional cardiac activation sequence during pacing and ventricular tachycardia. Heart Rhythm, 8(8), 1266-1272. doi:10.1016/j.hrthm.2011.03.014 es_ES
dc.description.references Bin He, Guanglin Li, & Xin Zhang. (2003). Noninvasive imaging of cardiac transmembrane potentials within three-dimensional myocardium by means of a realistic geometry anisotropic heart model. IEEE Transactions on Biomedical Engineering, 50(10), 1190-1202. doi:10.1109/tbme.2003.817637 es_ES
dc.description.references Bin He, & Dongsheng Wu. (2001). Imaging and visualization of 3-D cardiac electric activity. IEEE Transactions on Information Technology in Biomedicine, 5(3), 181-186. doi:10.1109/4233.945288 es_ES
dc.description.references Horáček, B. M., Sapp, J. L., Penney, C. J., Warren, J. W., & Wang, J. J. (2011). Comparison of epicardial potential maps derived from the 12-lead electrocardiograms with scintigraphic images during controlled myocardial ischemia. Journal of Electrocardiology, 44(6), 707-712. doi:10.1016/j.jelectrocard.2011.08.009 es_ES
dc.description.references Horáček, B. M., Wang, L., Dawoud, F., Xu, J., & Sapp, J. L. (2015). Noninvasive electrocardiographic imaging of chronic myocardial infarct scar. Journal of Electrocardiology, 48(6), 952-958. doi:10.1016/j.jelectrocard.2015.08.035 es_ES
dc.description.references Jamil-Copley, S., Vergara, P., Carbucicchio, C., Linton, N., Koa-Wing, M., Luther, V., … Kanagaratnam, P. (2015). Application of Ripple Mapping to Visualize Slow Conduction Channels Within the Infarct-Related Left Ventricular Scar. Circulation: Arrhythmia and Electrophysiology, 8(1), 76-86. doi:10.1161/circep.114.001827 es_ES
dc.description.references Janssen, A. M., Potyagaylo, D., Dössel, O., & Oostendorp, T. F. (2017). Assessment of the equivalent dipole layer source model in the reconstruction of cardiac activation times on the basis of BSPMs produced by an anisotropic model of the heart. Medical & Biological Engineering & Computing, 56(6), 1013-1025. doi:10.1007/s11517-017-1715-x es_ES
dc.description.references Knecht, S., Sohal, M., Deisenhofer, I., Albenque, J.-P., Arentz, T., Neumann, T., … Rostock, T. (2017). Multicentre evaluation of non-invasive biatrial mapping for persistent atrial fibrillation ablation: the AFACART study. EP Europace, 19(8), 1302-1309. doi:10.1093/europace/euw168 es_ES
dc.description.references Kuck, K.-H., Schaumann, A., Eckardt, L., Willems, S., Ventura, R., Delacrétaz, E., … Hansen, P. S. (2010). Catheter ablation of stable ventricular tachycardia before defibrillator implantation in patients with coronary heart disease (VTACH): a multicentre randomised controlled trial. The Lancet, 375(9708), 31-40. doi:10.1016/s0140-6736(09)61755-4 es_ES
dc.description.references Identification of Rotors during Human Atrial Fibrillation Using Contact Mapping and Phase Singularity Detection: Technical Considerations. (2017). IEEE Transactions on Biomedical Engineering, 64(2), 310-318. doi:10.1109/tbme.2016.2554660 es_ES
dc.description.references Leong, K. M. W., Ng, F. S., Yao, C., Roney, C., Taraborrelli, P., Linton, N. W. F., … Varnava, A. M. (2017). ST-Elevation Magnitude Correlates With Right Ventricular Outflow Tract Conduction Delay in Type I Brugada ECG. Circulation: Arrhythmia and Electrophysiology, 10(10). doi:10.1161/circep.117.005107 es_ES
dc.description.references Chenguang Liu, Eggen, M. D., Swingen, C. M., Iaizzo, P. A., & Bin He. (2012). Noninvasive Mapping of Transmural Potentials During Activation in Swine Hearts From Body Surface Electrocardiograms. IEEE Transactions on Medical Imaging, 31(9), 1777-1785. doi:10.1109/tmi.2012.2202914 es_ES
dc.description.references MacLeod, R. S., Ni, Q., Punske, B., Ershler, P. R., Yilmaz, B., & Taccardi, B. (2000). Effects of heart position on the body-surface electrocardiogram. Journal of Electrocardiology, 33, 229-237. doi:10.1054/jelc.2000.20357 es_ES
dc.description.references Metzner, A., Wissner, E., Tsyganov, A., Kalinin, V., Schlüter, M., Lemes, C., … Kuck, K.-H. (2017). Noninvasive phase mapping of persistent atrial fibrillation in humans: Comparison with invasive catheter mapping. Annals of Noninvasive Electrocardiology, 23(4), e12527. doi:10.1111/anec.12527 es_ES
dc.description.references Modre, R., Tilg, B., Fischer, G., Hanser, F., Messnarz, B., Seger, M., … Roithinger, F. X. (2003). Atrial Noninvasive Activation Mapping of Paced Rhythm Data. Journal of Cardiovascular Electrophysiology, 14(7), 712-719. doi:10.1046/j.1540-8167.2003.02558.x es_ES
dc.description.references Narayan, S. M., Krummen, D. E., Shivkumar, K., Clopton, P., Rappel, W.-J., & Miller, J. M. (2012). Treatment of Atrial Fibrillation by the Ablation of Localized Sources. Journal of the American College of Cardiology, 60(7), 628-636. doi:10.1016/j.jacc.2012.05.022 es_ES
dc.description.references NG, J., KADISH, A. H., & GOLDBERGER, J. J. (2007). Technical Considerations for Dominant Frequency Analysis. Journal of Cardiovascular Electrophysiology, 18(7), 757-764. doi:10.1111/j.1540-8167.2007.00810.x es_ES
dc.description.references Oosterhoff, P., Meijborg, V. M. F., van Dam, P. M., van Dessel, P. F. H. M., Belterman, C. N. W., Streekstra, G. J., … Oostendorp, T. F. (2016). Experimental Validation of Noninvasive Epicardial and Endocardial Activation Imaging. Circulation: Arrhythmia and Electrophysiology, 9(8). doi:10.1161/circep.116.004104 es_ES
dc.description.references Oster, H. S., Taccardi, B., Lux, R. L., Ershler, P. R., & Rudy, Y. (1997). Noninvasive Electrocardiographic Imaging. Circulation, 96(3), 1012-1024. doi:10.1161/01.cir.96.3.1012 es_ES
dc.description.references Oster, H. S., Taccardi, B., Lux, R. L., Ershler, P. R., & Rudy, Y. (1998). Electrocardiographic Imaging. Circulation, 97(15), 1496-1507. doi:10.1161/01.cir.97.15.1496 es_ES
dc.description.references PEDRÓN-TORRECILLA, J., RODRIGO, M., CLIMENT, A. M., LIBEROS, A., PÉREZ-DAVID, E., BERMEJO, J., … GUILLEM, M. S. (2016). Noninvasive Estimation of Epicardial Dominant High-Frequency Regions During Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 27(4), 435-442. doi:10.1111/jce.12931 es_ES
dc.description.references Ploux, S., Lumens, J., Whinnett, Z., Montaudon, M., Strom, M., Ramanathan, C., … Bordachar, P. (2013). Noninvasive Electrocardiographic Mapping to Improve Patient Selection for Cardiac Resynchronization Therapy. Journal of the American College of Cardiology, 61(24), 2435-2443. doi:10.1016/j.jacc.2013.01.093 es_ES
dc.description.references Potyagaylo, D., Segel, M., Schulze, W. H. W., & Dössel, O. (2013). Noninvasive Localization of Ectopic Foci: A New Optimization Approach for Simultaneous Reconstruction of Transmembrane Voltages and Epicardial Potentials. Lecture Notes in Computer Science, 166-173. doi:10.1007/978-3-642-38899-6_20 es_ES
dc.description.references Punshchykova, O., Švehlíková, J., Tyšler, M., Grünes, R., Sedova, K., Osmančík, P., … Kneppo, P. (2016). Influence of Torso Model Complexity on the Noninvasive Localization of Ectopic Ventricular Activity. Measurement Science Review, 16(2), 96-102. doi:10.1515/msr-2016-0013 es_ES
dc.description.references RAMANATHAN, C., & RUDY, Y. (2001). Electrocardiographic Imaging: II. Effect of Torso Inhomogeneities on Noninvasive Reconstruction of Epicardial Potentials, Electrograms, and Isochrones. Journal of Cardiovascular Electrophysiology, 12(2), 241-252. doi:10.1046/j.1540-8167.2001.00241.x es_ES
dc.description.references Reddy, V. Y., Reynolds, M. R., Neuzil, P., Richardson, A. W., Taborsky, M., Jongnarangsin, K., … Josephson, M. E. (2007). Prophylactic Catheter Ablation for the Prevention of Defibrillator Therapy. New England Journal of Medicine, 357(26), 2657-2665. doi:10.1056/nejmoa065457 es_ES
dc.description.references Rodrigo, M., Climent, A. M., Liberos, A., Fernández-Avilés, F., Berenfeld, O., Atienza, F., & Guillem, M. S. (2017). Technical Considerations on Phase Mapping for Identification of Atrial Reentrant Activity in Direct- and Inverse-Computed Electrograms. Circulation: Arrhythmia and Electrophysiology, 10(9). doi:10.1161/circep.117.005008 es_ES
dc.description.references ROTEN, L., PEDERSEN, M., PASCALE, P., SHAH, A., ELIAUTOU, S., SCHERR, D., … HAÏSSAGUERRE, M. (2012). Noninvasive Electrocardiographic Mapping for Prediction of Tachycardia Mechanism and Origin of Atrial Tachycardia Following Bilateral Pulmonary Transplantation. Journal of Cardiovascular Electrophysiology, 23(5), 553-555. doi:10.1111/j.1540-8167.2011.02250.x es_ES
dc.description.references Rudy, Y. (2013). Noninvasive Electrocardiographic Imaging of Arrhythmogenic Substrates in Humans. Circulation Research, 112(5), 863-874. doi:10.1161/circresaha.112.279315 es_ES
dc.description.references Ghosh, S., Avari, J. N., Rhee, E. K., Woodard, P. K., & Rudy, Y. (2008). Noninvasive electrocardiographic imaging (ECGI) of epicardial activation before and after catheter ablation of the accessory pathway in a patient with Ebstein anomaly. Heart Rhythm, 5(6), 857-860. doi:10.1016/j.hrthm.2008.03.011 es_ES
dc.description.references Rudy, Y., Plonsey, R., & Liebman, J. (1979). The effects of variations in conductivity and geometrical parameters on the electrocardiogram, using an eccentric spheres model. Circulation Research, 44(1), 104-111. doi:10.1161/01.res.44.1.104 es_ES
dc.description.references SALINET, J. L., TUAN, J. H., SANDILANDS, A. J., STAFFORD, P. J., SCHLINDWEIN, F. S., & NG, G. A. (2013). Distinctive Patterns of Dominant Frequency Trajectory Behavior in Drug-Refractory Persistent Atrial Fibrillation: Preliminary Characterization of Spatiotemporal Instability. Journal of Cardiovascular Electrophysiology, 25(4), 371-379. doi:10.1111/jce.12331 es_ES
dc.description.references Dalu, Y. (1978). Relating the multipole moments of the heart to activated parts of the epicardium and endocardium. Annals of Biomedical Engineering, 6(4), 492-505. doi:10.1007/bf02584552 es_ES
dc.description.references Sánchez, C., Bueno-Orovio, A., Pueyo, E., & Rodríguez, B. (2017). Atrial Fibrillation Dynamics and Ionic Block Effects in Six Heterogeneous Human 3D Virtual Atria with Distinct Repolarization Dynamics. Frontiers in Bioengineering and Biotechnology, 5. doi:10.3389/fbioe.2017.00029 es_ES
dc.description.references Sanders, P., Berenfeld, O., Hocini, M., Jaïs, P., Vaidyanathan, R., Hsu, L.-F., … Haïssaguerre, M. (2005). Spectral Analysis Identifies Sites of High-Frequency Activity Maintaining Atrial Fibrillation in Humans. Circulation, 112(6), 789-797. doi:10.1161/circulationaha.104.517011 es_ES
dc.description.references Sapp, J. L., Bar-Tal, M., Howes, A. J., Toma, J. E., El-Damaty, A., Warren, J. W., … Horáček, B. M. (2017). Real-Time Localization of Ventricular Tachycardia Origin From the 12-Lead Electrocardiogram. JACC: Clinical Electrophysiology, 3(7), 687-699. doi:10.1016/j.jacep.2017.02.024 es_ES
dc.description.references Sapp, J. L., Dawoud, F., Clements, J. C., & Horáček, B. M. (2012). Inverse Solution Mapping of Epicardial Potentials. Circulation: Arrhythmia and Electrophysiology, 5(5), 1001-1009. doi:10.1161/circep.111.970160 es_ES
dc.description.references Sapp, J. L., Wells, G. A., Parkash, R., Stevenson, W. G., Blier, L., Sarrazin, J.-F., … Tang, A. S. L. (2016). Ventricular Tachycardia Ablation versus Escalation of Antiarrhythmic Drugs. New England Journal of Medicine, 375(2), 111-121. doi:10.1056/nejmoa1513614 es_ES
dc.description.references Schulze, W. H. W., Chen, Z., Relan, J., Potyagaylo, D., Krueger, M. W., Karim, R., … Dössel, O. (2016). ECG imaging of ventricular tachycardia: evaluation against simultaneous non-contact mapping and CMR-derived grey zone. Medical & Biological Engineering & Computing, 55(6), 979-990. doi:10.1007/s11517-016-1566-x es_ES
dc.description.references Shah, D. C., Jaïs, P., Haïssaguerre, M., Chouairi, S., Takahashi, A., Hocini, M., … Clémenty, J. (1997). Three-dimensional Mapping of the Common Atrial Flutter Circuit in the Right Atrium. Circulation, 96(11), 3904-3912. doi:10.1161/01.cir.96.11.3904 es_ES
dc.description.references Shome, S., & Macleod, R. (s. f.). Simultaneous High-Resolution Electrical Imaging of Endocardial, Epicardial and Torso-Tank Surfaces Under Varying Cardiac Metabolic Load and Coronary Flow. Lecture Notes in Computer Science, 320-329. doi:10.1007/978-3-540-72907-5_33 es_ES
dc.description.references SIMMS, H. D., & GESELOWITZ, D. B. (1995). Computation of Heart Surface Potentials Using the Surface Source Model. Journal of Cardiovascular Electrophysiology, 6(7), 522-531. doi:10.1111/j.1540-8167.1995.tb00425.x es_ES
dc.description.references Svehlikova, J., Teplan, M., & Tysler, M. (2018). Geometrical constraint of sources in noninvasive localization of premature ventricular contractions. Journal of Electrocardiology, 51(3), 370-377. doi:10.1016/j.jelectrocard.2018.02.013 es_ES
dc.description.references Tsyganov, A., Wissner, E., Metzner, A., Mironovich, S., Chaykovskaya, M., Kalinin, V., … Kuck, K.-H. (2018). Mapping of ventricular arrhythmias using a novel noninvasive epicardial and endocardial electrophysiology system. Journal of Electrocardiology, 51(1), 92-98. doi:10.1016/j.jelectrocard.2017.07.018 es_ES
dc.description.references Umapathy, K., Nair, K., Masse, S., Krishnan, S., Rogers, J., Nash, M. P., & Nanthakumar, K. (2010). Phase Mapping of Cardiac Fibrillation. Circulation: Arrhythmia and Electrophysiology, 3(1), 105-114. doi:10.1161/circep.110.853804 es_ES
dc.description.references Van Dam, P. M., Oostendorp, T. F., Linnenbank, A. C., & van Oosterom, A. (2009). Non-Invasive Imaging of Cardiac Activation and Recovery. Annals of Biomedical Engineering, 37(9), 1739-1756. doi:10.1007/s10439-009-9747-5 es_ES
dc.description.references Van Oosterom, A. (2001). Genesis of the T wave as based on an equivalent surface source model. Journal of Electrocardiology, 34(4), 217-227. doi:10.1054/jelc.2001.28896 es_ES
dc.description.references Van Oosterom, A. (2002). Solidifying the solid angle. Journal of Electrocardiology, 35(4), 181-192. doi:10.1054/jelc.2002.37176 es_ES
dc.description.references Van Oosterom, A. (2004). ECGSIM: an interactive tool for studying the genesis of QRST waveforms. Heart, 90(2), 165-168. doi:10.1136/hrt.2003.014662 es_ES
dc.description.references Van Oosterom, A., & Jacquemet, V. (2005). Genesis of the P wave: Atrial signals as generated by the equivalent double layer source model. EP Europace, 7(s2), S21-S29. doi:10.1016/j.eupc.2005.05.001 es_ES
dc.description.references Varma, N., Jia, P., & Rudy, Y. (2007). Electrocardiographic imaging of patients with heart failure with left bundle branch block and response to cardiac resynchronization therapy. Journal of Electrocardiology, 40(6), S174-S178. doi:10.1016/j.jelectrocard.2007.06.017 es_ES
dc.description.references Linwei Wang, Wong, K. C. L., Heye Zhang, Huafeng Liu, & Pengcheng Shi. (2011). Noninvasive Computational Imaging of Cardiac Electrophysiology for 3-D Infarct. IEEE Transactions on Biomedical Engineering, 58(4), 1033-1043. doi:10.1109/tbme.2010.2099226 es_ES
dc.description.references Linwei Wang, Heye Zhang, Wong, K., Huafeng Liu, & Pengcheng Shi. (2010). Physiological-Model-Constrained Noninvasive Reconstruction of Volumetric Myocardial Transmembrane Potentials. IEEE Transactions on Biomedical Engineering, 57(2), 296-315. doi:10.1109/tbme.2009.2024531 es_ES
dc.description.references Weiss, D. L., Seemann, G., Keller, D. U. J., Farina, D., Sachse, F. B., & Dossel, O. (2007). Modeling of heterogeneous electrophysiology in the human heart with respect to ECG genesis. 2007 Computers in Cardiology. doi:10.1109/cic.2007.4745418 es_ES
dc.description.references Wissner, E., Revishvili, A., Metzner, A., Tsyganov, A., Kalinin, V., Lemes, C., … Kuck, K.-H. (2016). Noninvasive epicardial and endocardial mapping of premature ventricular contractions. Europace, euw103. doi:10.1093/europace/euw103 es_ES
dc.description.references Zhang, X., Ramachandra, I., Liu, Z., Muneer, B., Pogwizd, S. M., & He, B. (2005). Noninvasive three-dimensional electrocardiographic imaging of ventricular activation sequence. American Journal of Physiology-Heart and Circulatory Physiology, 289(6), H2724-H2732. doi:10.1152/ajpheart.00639.2005 es_ES
dc.description.references Zhou, Z., Jin, Q., Chen, L. Y., Yu, L., Wu, L., & He, B. (2016). Noninvasive Imaging of High-Frequency Drivers and Reconstruction of Global Dominant Frequency Maps in Patients With Paroxysmal and Persistent Atrial Fibrillation. IEEE Transactions on Biomedical Engineering, 63(6), 1333-1340. doi:10.1109/tbme.2016.2553641 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem