- -

Exploring the interoperability of remote GPGPU virtualization using rCUDA and directive-based programming models

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Exploring the interoperability of remote GPGPU virtualization using rCUDA and directive-based programming models

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Castelló-Gimeno, Adrián es_ES
dc.contributor.author Peña Monferrer, Antonio José es_ES
dc.contributor.author Mayo Gual, Rafael es_ES
dc.contributor.author Planas,Judit es_ES
dc.contributor.author Quintana Ortí, Enrique Salvador es_ES
dc.contributor.author Balaji, Pavan es_ES
dc.date.accessioned 2020-07-08T03:32:26Z
dc.date.available 2020-07-08T03:32:26Z
dc.date.issued 2018-11 es_ES
dc.identifier.issn 0920-8542 es_ES
dc.identifier.uri http://hdl.handle.net/10251/147632
dc.description.abstract [EN] Directive-based programming models, such as OpenMP, OpenACC, and OmpSs, enable users to accelerate applications by using coprocessors with little effort. These devices offer significant computing power, but their use can introduce two problems: an increase in the total cost of ownership and their underutilization because not all codes match their architecture. Remote accelerator virtualization frameworks address those problems. In particular, rCUDA provides transparent access to any graphic processor unit installed in a cluster, reducing the number of accelerators and increasing their utilization ratio. Joining these two technologies, directive-based programming models and rCUDA, is thus highly appealing. In this work, we study the integration of OmpSs and OpenACC with rCUDA, describing and analyzing several applications over three different hardware configurations that include two InfiniBand interconnections and three NVIDIA accelerators. Our evaluation reveals favorable performance results, showing low overhead and similar scaling factors when using remote accelerators instead of local devices. es_ES
dc.description.sponsorship The researchers from the Universitat Jaume I de Castello were supported by Universitat Jaume I research project (P11B2013-21), project TIN2014-53495-R, a Generalitat Valenciana grant and FEDER. The researcher from the Barcelona Supercomputing Center (BSC-CNS) Lausanne was supported by the European Commission (HiPEAC-3 Network of Excellence, FP7-ICT 287759), Intel-BSC Exascale Lab collaboration, IBM/BSC Exascale Initiative collaboration agreement, Computacion de Altas Prestaciones VI (TIN2012-34557) and the Generalitat de Catalunya (2014-SGR-1051). This work was partially supported by the U.S. Dept. of Energy, Office of Science, Office of Advanced Scientific Computing Research (SC-21), under contract DE-AC02-06CH11357. The initial version of rCUDA was jointly developed by Universitat Politecnica de Valencia (UPV) and Universitat Jaume I de Castellon (UJI) until year 2010. This initial development was later split into two branches. Part of the UPV version was used in this paper. The development of the UPV branch was supported by Generalitat Valenciana under Grants PROMETEO 2008/060 and Prometeo II 2013/009. We gratefully acknowledge the computing resources provided and operated by the Joint Laboratory for System Evaluation (JLSE) at Argonne National Laboratory. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof The Journal of Supercomputing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject GPUs es_ES
dc.subject Directive-based programming models es_ES
dc.subject OpenACC es_ES
dc.subject OmpSs es_ES
dc.subject Remote virtualization es_ES
dc.subject RCUDA es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Exploring the interoperability of remote GPGPU virtualization using rCUDA and directive-based programming models es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11227-016-1791-y es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/287759/EU/High Performance and Embedded Architecture and Compilation/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2014-53495-R/ES/COMPUTACION HETEROGENEA DE BAJO CONSUMO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-AC02-06CH11357/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UJI//P1-1B2013-21/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2012-34557/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat de Catalunya//2014 SGR 1051/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F009/ES/DESARROLLO DE LIBRERIAS PARA GESTIONAR EL ACCESO A DISPOSITIVOS REMOTOS COMPARTIDOS EN SERVIDORES DE ALTAS PRESTACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Castelló-Gimeno, A.; Peña Monferrer, AJ.; Mayo Gual, R.; Planas, J.; Quintana Ortí, ES.; Balaji, P. (2018). Exploring the interoperability of remote GPGPU virtualization using rCUDA and directive-based programming models. The Journal of Supercomputing. 74(11):5628-5642. https://doi.org/10.1007/s11227-016-1791-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11227-016-1791-y es_ES
dc.description.upvformatpinicio 5628 es_ES
dc.description.upvformatpfin 5642 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 74 es_ES
dc.description.issue 11 es_ES
dc.relation.pasarela S\380790 es_ES
dc.contributor.funder Universitat Jaume I es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Generalitat de Catalunya es_ES
dc.contributor.funder U.S. Department of Energy es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Strohmaier E, Dongarra J, Simon H, Meuer M (2015) TOP500 supercomputing sites. http://www.top500.org/lists/2015/11 . Accessed Nov 2015 es_ES
dc.description.references NVIDIA (2015) CUDA API reference, version 7.5 es_ES
dc.description.references Shreiner D, Sellers G, Kessenich JM, Licea-Kane BM (2013) OpenGL programming guide: the official guide to learning OpenGL. Addison-Wesley Professional, Boston es_ES
dc.description.references Mark WR, Glanville RS, Akeley K, Kilgard MJ (2003) Cg: a system for programming graphics hardware in a C-like language. ACM Trans Graph (TOG) 22(3):896–907 es_ES
dc.description.references Munshi A (2014)The OpenCL specification 2.0. 0.5em minus 0.4em Khronos OpenCL working group es_ES
dc.description.references OpenACC directives for accelerators (2015). http://www.openacc-standard.org . Accessed Dec 2015 es_ES
dc.description.references OmpSs project home page. http://pm.bsc.es/ompss . Accessed Dec 2015 es_ES
dc.description.references OpenMP application program interface 4.0 (2013). OpenMP Architecture Board es_ES
dc.description.references Peña AJ (2013) Virtualization of accelerators in high performance clusters. Ph.D. dissertation, Universitat Jaume I, Castellón es_ES
dc.description.references Kawai A, Yasuoka K, Yoshikawa K, Narumi T (2012) Distributed-shared CUDA: virtualization of large-scale GPU systems for programmability and reliability. In: International conference on future computational technologies and applications es_ES
dc.description.references Shi L, Chen H, Sun J, Li K (2012) vCUDA: GPU-accelerated high-performance computing in virtual machines. IEEE Trans Comput 61(6):804–816 es_ES
dc.description.references Xiao S, Balaji P, Zhu Q, Thakur R, Coghlan S, Lin H, Wen G, Hong J, Feng W (2012) VOCL: an optimized environment for transparent virtualization of graphics processing units. In: Innovative parallel computing. IEEE, New York es_ES
dc.description.references Kim J, Seo S, Lee J, Nah J, Jo G, Lee J (2012) SnuCL: an OpenCL framework for heterogeneous CPU/GPU clusters. In: International conference on supercomputing es_ES
dc.description.references Duran A, Ayguadé E, Badia RM, Labarta J, Martinell L, Martorell X, Planas J (2011) OmpSs: a proposal for programming heterogeneous multi-core architectures. Parallel Process Lett 21(02):173–193 es_ES
dc.description.references Castelló A, Duato J, Mayo R, Peña AJ, Quintana-Ortí ES, Roca V, Silla F (2014) On the use of remote GPUs and low-power processors for the acceleration of scientific applications. In: The fourth international conference on smart grids, green communications and IT energy-aware technologies, pp 57–62 es_ES
dc.description.references Iserte S, Castelló A, Mayo R, Quintana-Ortí ES, Reaño C, Prades J, Silla F, Duato J (2014) SLURM support for remote GPU virtualization: implementation and performance study. In: International symposium on computer architecture and high performance computing (SBAC-PAD) es_ES
dc.description.references Peña AJ, Reaño C, Silla F, Mayo R, Quintana-Ortí ES, Duato J (2014) A complete and efficient CUDA-sharing solution for HPC clusters. Parallel Comput 40(10):574–588 es_ES
dc.description.references Kegel P, Steuwer M, Gorlatch S (2012) dOpenCL: towards a uniform programming approach for distributed heterogeneous multi-/many-core systems. In: International parallel and distributed processing symposium workshops (IPDPSW) es_ES
dc.description.references Castelló A, Peña AJ, Mayo R, Balaji P, Quintana-Ortí ES (2015) Exploring the suitability of remote GPGPU virtualization for the OpenACC programming model using rCUDA. In: IEEE international conference on cluster computing es_ES
dc.description.references Castelló A, Mayo R, Planas J, Quintana-Ortí ES (2015) Exploiting task-parallelism on GPU clusters via OmpSs and rCUDA virtualization. In: IEEE international workshop on reengineering for parallelism in heterogeneous parallel platforms es_ES
dc.description.references HP Corp., Intel Corp., Microsoft Corp., Phoenix Tech. Ltd., Toshiba Corp. (2011) Advanced configuration and power interface specification, revision 5.0 es_ES
dc.description.references Reaño C, Silla F, Castelló A, Peña AJ, Mayo R, Quintana-Ortí ES, Duato J (2014) Improving the user experience of the rCUDA remote GPU virtualization framework. Concurr Comput 27(14):3746–3770 es_ES
dc.description.references PGI compilers and tools (2015) http://www.pgroup.com/ . Accessed Dec 2015 es_ES
dc.description.references Johnson N (2013) EPCC OpenACC benchmark suite. https://www.epcc.ed.ac.uk/ . Accessed Dec 2015 es_ES
dc.description.references Herdman J, Gaudin W, McIntosh-Smith S, Boulton M, Beckingsale D, Mallinson A, Jarvis SA (2012) Accelerating hydrocodes with OpenACC, OpenCL and CUDA. In: SC companion: high performance computing, networking, storage and analysis es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem