- -

An integrated model for aircraft routing and crew scheduling: Lagrangian Relaxation and metaheuristic algorithm

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An integrated model for aircraft routing and crew scheduling: Lagrangian Relaxation and metaheuristic algorithm

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mirjafari, Masoumeh es_ES
dc.contributor.author Rashidi Komijan, Alireza es_ES
dc.contributor.author Shoja, Ahmad es_ES
dc.date.accessioned 2020-07-09T09:01:31Z
dc.date.available 2020-07-09T09:01:31Z
dc.date.issued 2020-01-24
dc.identifier.uri http://hdl.handle.net/10251/147710
dc.description.abstract [EN] Airline optimization is a significant problem in recent researches and airline industryl as it can determine the level of service, profit and competition status of the airline. Aircraft and crew are expensive resources that need efficient utilization. This paper focuses simultaneously on two major issues including aircraft maintenance routing and crew scheduling. Several key issues such as aircraft replacement, fairly night flights assignment and long-life aircrafts are considered in this model. We used the flight hours as a new framework to control aircraft maintenance. At first, an integrated mathematical model for aircraft routing and crew scheduling problems is developed with the aim of cost minimization. Then, Lagrangian relaxation and Particle Swarm Optimization algorithm (PSO) are used as the solution techniques. To evaluate the efficiency of solution approaches, model is solved with different numerical examples in small, medium and large sizes and compared with GAMS output. The results show that Lagrangian relaxation method provides better solutions comparing to PSO and also has a very small gap to optimum solution. es_ES
dc.description.abstract [ES] La optimización de aerolíneas es un problema importante en investigaciones recientes e industria de aerolíneas, ya que puede determinar el nivel de servicio, el beneficio y el estado de competencia de la aerolínea. Las aeronaves y la tripulación son recursos costosos que necesitan una utilización eficiente. Este artículo se centra simultáneamente en dos cuestiones principales, incluyendo el enrutamiento de mantenimiento de aeronaves y la programación de la tripulación. En este modelo se consideran varios temas clave, como el reemplazo de aeronaves, la asignación de vuelos nocturnos y los aviones envejecidos. Usamos las horas de vuelo como un nuevo marco para controlar el mantenimiento de las aeronaves. Al principio, se desarrolla un modelo matemático integrado para el enrutamiento de aeronaves y los problemas de programación de la tripulación con el objetivo de la minimización de costos. A continuación, se utilizan como técnicas de solución la relajación lagran-giana y el algoritmo “Particle Swarm Optimization” (PSO). Para evaluar la eficiencia de los en-foques de la solución, el modelo se resuelve con diferentes ejemplos numéricos en tamaños pequeños, medianos y grandes y se compara con la salida GAMS. Los resultados muestran que el método de relajación lagrangiana proporciona mejores soluciones en comparación con PSO y también tiene una pequeña diferencia para una solución óptima es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof WPOM-Working Papers on Operations Management es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Aircraft maintenance routing es_ES
dc.subject Crew scheduling es_ES
dc.subject Integer Programming es_ES
dc.subject Lagrangian Relaxation es_ES
dc.subject Particle Swarm Optimization es_ES
dc.subject Enrutamiento de mantenimiento de aeronaves es_ES
dc.subject Programación de Tripulación es_ES
dc.subject Programación entera es_ES
dc.subject Relajación Lagrangiana es_ES
dc.title An integrated model for aircraft routing and crew scheduling: Lagrangian Relaxation and metaheuristic algorithm es_ES
dc.title.alternative Un modelo integrado para el enrutamiento de aeronaves y la programación de la tripulación: Relajación lagrangiana y algoritmo metaheurístico es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/wpom.v11i1.12891
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Mirjafari, M.; Rashidi Komijan, A.; Shoja, A. (2020). An integrated model for aircraft routing and crew scheduling: Lagrangian Relaxation and metaheuristic algorithm. WPOM-Working Papers on Operations Management. 11(1):25-38. https://doi.org/10.4995/wpom.v11i1.12891 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/wpom.v11i1.12891 es_ES
dc.description.upvformatpinicio 25 es_ES
dc.description.upvformatpfin 38 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1989-9068
dc.relation.pasarela OJS\12891 es_ES
dc.description.references Al-Thani, Nayla Ahmad, Ben Ahmed, Mohamed and Haouari, Mohamed (2016). A model and optimization-based heuristic for the operational aircraft maintenance routing problem, Transportation Research Part C: Emerging Technologies, Volume 72, Pages 29-44. https://doi.org/10.1016/j.trc.2016.09.004 es_ES
dc.description.references Azadeh, A., HosseinabadiFarahani, M., Eivazy, H., Nazari-Shirkouhi, S., &Asadipour, G. (2013). A hybrid meta-heuristic algorithm for optimization of crew scheduling, Applied Soft Computing, Volume 13, Pages 158-164. https://doi.org/10.1016/j.asoc.2012.08.012 es_ES
dc.description.references Barnhart C. and Cohn, A. (2004). Airline schedule planning: Accomplishments and opportunities, Manufacturing & Service Operations Management, 6(1):3-22, 47, 69, 141, 144. https://doi.org/10.1287/msom.1030.0018 es_ES
dc.description.references Basdere, Mehmet and Bilge, Umit (2014). Operational aircraft maintenance routing problem with remaining time consideration, European Journal of Operational Research, Volume 235, Pages 315-328. https://doi.org/10.1016/j.ejor.2013.10.066 es_ES
dc.description.references Bazargan, Massoud (2010). Airline Operations and scheduling second edition, Embry-Riddle Aeronautical University, USA, Ashgate publishing limite. es_ES
dc.description.references Belien, Jeroen, Demeulemeester, Eric and Brecht (2010). Integrated staffing and scheduling for an aircraft line maintenance problem, HUB RESEARCH PAPER Economics & Management. es_ES
dc.description.references Ben Ahmed, M., Zeghal Mansour, Farah and Haouari, Mohamed (2018). Robust integrated maintenance aircraft routing and crew pairing, Journal of Air Transport Management, Volume 73, Pages 15-31. https://doi.org/10.1016/j.jairtraman.2018.07.007 es_ES
dc.description.references Ben Ahmed, M., Zeghal Mansour, F., Haouari, M. (2017). A two-level optimization approach for robust aircraft routing and retiming, Computers and Industrial Engineering, Volume 112, Pages 586-594. https://doi.org/10.1016/j.cie.2016.09.021 es_ES
dc.description.references Borndorfer, R., Schelten, U., Schlechte, T., Weider, S. (2006). A column generation approach to airline crew scheduling, Springer Berlin Heidelberg, Pages 343-348. https://doi.org/10.1007/3-540-32539-5_54 es_ES
dc.description.references Clarke, L., E. Johnson, G. Nemhauser, Z. Zhu. (1997). The Aircraft Rotation Problem. Annals of Operations Research, 69, Pages 33-46. https://doi.org/10.1023/A:1018945415148 es_ES
dc.description.references Deveci, Muhammet and ÇetinDemirel, Nihan (2018). Evolutionary algorithms for solving the airline crew pairing problem, Computers & Industrial Engineering, Volume 115, Pages 389-406. https://doi.org/10.1016/j.cie.2017.11.022 es_ES
dc.description.references Dozic, S., Kalic, M. (2015). Three-stage airline fleet planning model, J. Air Transport. Manag, 43, Pages 30-39. https://doi.org/10.1016/j.jairtraman.2015.03.011 es_ES
dc.description.references Eltoukhy, A.E., Chan, F.T., Chung, S. (2017). Airline schedule planning: a review and future directions, Ind. Manag. Data Syst, 117(6), Pages 1201-1243. https://doi.org/10.1108/IMDS-09-2016-0358 es_ES
dc.description.references Feo, T. A., J. F. Bard. (1989). Flight Scheduling and Maintenance Base Planning. Management Science, 35(12), Pages 1415-1432. https://doi.org/10.1287/mnsc.35.12.1415 es_ES
dc.description.references Goffin, J. L. (1977). On the convergence rates of subgradient optimization methods. Math. Programming, 13, Pages 329-347. https://doi.org/10.1007/BF01584346 es_ES
dc.description.references Gopalakrishnan, B., Johnson, E. L (2005). Airline crew scheduling, State-of-the-art. Ann. Oper. Res, 140(1), Pages 305-337. https://doi.org/10.1007/s10479-005-3975-3 es_ES
dc.description.references Held, M. and Karp, R.M. (1970). The Traveling-Salesman Problem and Minimum SpanningTrees. Operations Research, 18, 1138-1162. https://doi.org/10.1287/opre.18.6.1138 es_ES
dc.description.references Held, M. Wolfe, P., Crowder, H. D. (1974). Validation of subgradient optimization, Math. Programming, 6, 62-88. https://doi.org/10.1007/BF01580223 es_ES
dc.description.references Jamili, Amin (2017). A robust mathematical model and heuristic algorithms for integrated aircraft routing and scheduling, with consideration of fleet assignment problem, Journal of Air Transport Management, Volume 58, Pages 21-30. https://doi.org/10.1016/j.jairtraman.2016.08.008 es_ES
dc.description.references Jiang, H., Barnhart, C. (2009) Dynamic airline scheduling, Transport. Sci, 43(3), Pages 336-354. https://doi.org/10.1287/trsc.1090.0269 es_ES
dc.description.references Kasirzadeh, A., Saddoune, M., Soumis, F. (2015). Airline crew scheduling: models, algorhitms and data sets, Euro Journal on Transportation and Logistics, 6(2), Pages 111-137. https://doi.org/10.1007/s13676-015-0080-x es_ES
dc.description.references Lacasse-Guay, E., Desaulniers, G., Soumis, F. (2010). Aircraft routing under different business processes, J. Air Transport. Manag, 16(5), Pages 258-263. https://doi.org/10.1016/j.jairtraman.2010.02.001 es_ES
dc.description.references Muter, İbrahim, Birbil, Ş. İlker, Bülbül, Kerem, Şahin, Güvenç,Yenigün, Hüsnü, Taş,Duygu andTüzün, Dilek (2013). Solving a robust airline crew pairing problem with column generation, Computers & Operations Research, Volume 40, Issue 3, Pages 815-830. https://doi.org/10.1016/j.cor.2010.11.005 es_ES
dc.description.references Saddoune, Mohammed, Desaulniers, Guy, Elhallaoui, Issmail and François Soumis (2011). Integrated airline crew scheduling: A bi-dynamic constraint aggregation method using neighborhoods, European Journal of Operational Research, Volume 212, Pages 445-454. https://doi.org/10.1016/j.ejor.2011.02.009 es_ES
dc.description.references Safaei, Nima and K.S.Jardine, Andrew (2018). Aircraft routing with generalized maintenance constraints, Omega, Volume 80, Pages 111-122. https://doi.org/10.1016/j.omega.2017.08.013 es_ES
dc.description.references Shao Shengzhi (2012). Integrated Aircraft Fleeting, Routing, and Crew Pairing Models and Algorithms for the Airline Industry, Faculty of the Virginia Polytechnic Institute and State University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Industrial and Systems Engineering. es_ES
dc.description.references Shao, S., Sherali, H.D., Haouari, M. (2017). A novel model and decomposition approach for the integrated airline fleet assignment, aircraft routing, crew pairing problem, Transport. Sci, 51(1), Pages 233-249. https://doi.org/10.1287/trsc.2015.0623 es_ES
dc.description.references Sherali, H.D., Bish, E.K., Zhu, X. (2006). Airline fleet assignment concepts, models and algorithms, Eur. J. Oper. Res, 172(1), Pages 1-30. https://doi.org/10.1016/j.ejor.2005.01.056 es_ES
dc.description.references Warburg, V., Hansen, T.G., Larsen, A., Norman, H., Andersson, E. (2008). Dynamic airline scheduling: an analysis of potentials of refleeting and retiming, J. Air Transport. Manag. 14(4), Pages 163-167. https://doi.org/10.1016/j.jairtraman.2008.03.004 es_ES
dc.description.references Yan, C. and Kung, J. (2018). Robust aircraft routing, Transport. Sci, 52(1), Pages 118-133. https://doi.org/10.1287/trsc.2015.0657 es_ES
dc.description.references Yen, J.W., Birge, J.R., (2006). A stochastic programming approach to the airline crew scheduling problem. Transportation Science, Volume 40, Pages 3-14. https://doi.org/10.1287/trsc.1050.0138 es_ES
dc.description.references Yu, G. (1998). Operation Research in the Airline Industry. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-5501-8 es_ES
dc.description.references Zeren, Bahadir and Ozkol, Ibrahim (2016). A novel column generation strategy foe large scale airline crew pairing problems, Expert system with applications, Volume 55, Pages 133-144. https://doi.org/10.1016/j.eswa.2016.01.045 es_ES
dc.description.references Zhang, Dong, Lau, H.Y.K. Henry and Yu, Chuhang (2015). A two stage heuristic algorithm for the integrated aircraft and crew schedule recovery problems, Computers and Industrial Engineering, Volume 87, Pages 436-453. https://doi.org/10.1016/j.cie.2015.05.033 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem