dc.contributor.author |
Larroza, Andrés
|
es_ES |
dc.contributor.author |
López-Lereu, M.P.
|
es_ES |
dc.contributor.author |
Monmeneu, J.V.
|
es_ES |
dc.contributor.author |
Gavara-Doñate, Josep
|
es_ES |
dc.contributor.author |
Chorro, F.J.
|
es_ES |
dc.contributor.author |
Bodi, V.
|
es_ES |
dc.contributor.author |
Moratal, David
|
es_ES |
dc.date.accessioned |
2020-07-10T03:31:22Z |
|
dc.date.available |
2020-07-10T03:31:22Z |
|
dc.date.issued |
2018-04-16 |
es_ES |
dc.identifier.issn |
0094-2405 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/147734 |
|
dc.description.abstract |
[EN] Purpose: To investigate the ability of texture analysis to differentiate between infarcted nonviable, viable, and remote segments on cardiac cine magnetic resonance imaging (MRI).
Methods: This retrospective study included 50 patients suffering chronic myocardial infarction. The data were randomly split into training (30 patients) and testing (20 patients) sets. The left ventricular myocardium was segmented according to the 17-segment model in both cine and late gadolinium enhancement (LGE) MRI. Infarcted myocardium regions were identified on LGE in short-axis views. Nonviable segments were identified as those showing LGE 50%, and viable segments those showing 0 < LGE < 50% transmural extension. Features derived from five texture analysis methods were extracted from the segments on cine images. A support vector machine (SVM) classifier was trained with different combination of texture features to obtain a model that provided optimal classification performance.
Results: The best classification on testing set was achieved with local binary patterns features using a 2D + t approach, in which the features are computed by including information of the time dimension available in cine sequences. The best overall area under the receiver operating characteristic curve (AUC) were: 0.849, sensitivity of 92% to detect nonviable segments, 72% to detect viable segments, and 85% to detect remote segments.
Conclusion: Nonviable segments can be detected on cine MRI using texture analysis and this may be used as hypothesis for future research aiming to detect the infarcted myocardium by means of a gadolinium-free approach. |
es_ES |
dc.description.sponsorship |
This work was supported in part by the Spanish Ministerio de Economia y Competitividad (MINECO) and FEDER funds under grant BFU2015-64380-C2-2-R, by Instituto de Salud Carlos III and FEDER funds under grants FIS PI14/00271 and PIE15/00013 and by the Generalitat Valenciana under grant PROMETEO/2013/007. The first author, Andres Larroza, was supported by grant FPU12/01140 from the Spanish Ministerio de Educacion, Cultura y Deporte (MECD). |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
John Wiley & Sons |
es_ES |
dc.relation.ispartof |
Medical Physics |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Classification |
es_ES |
dc.subject |
Diagnosis |
es_ES |
dc.subject |
Heart |
es_ES |
dc.subject |
Machine learning |
es_ES |
dc.subject |
Magnetic resonance imaging |
es_ES |
dc.subject.classification |
TECNOLOGIA ELECTRONICA |
es_ES |
dc.title |
Texture analysis of cardiac cine magnetic resonance imaging to detect nonviable segments in patients with chronic myocardial infarction |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1002/mp.12783 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MINECO//BFU2015-64380-C2-2-R/ES/ANALISIS DE TEXTURAS EN IMAGEN CEREBRAL MULTIMODAL POR RESONANCIA MAGNETICA PARA UNA DETECCION TEMPRANA DE ALTERACIONES EN LA RED Y BIOMARCADORES DE ENFERMEDAD/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MINECO//PIE15%2F00013/ES/A multidisciplinary project to advance in basic mechanisms, diagnosis, prediction, and prevention of cardiac damage in reperfused acute myocardial infarction/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MINECO//PI14%2F00271/ES/Fibrosis miocárdica tras un infarto de miocardio. Estudio traslacional para la innovación diagnóstica con resonancia magnética y para el entendimiento de los mecanismos reguladores/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2013%2F007/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MECD//FPU12%2F01140/ES/FPU12%2F01140/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica |
es_ES |
dc.description.bibliographicCitation |
Larroza, A.; López-Lereu, M.; Monmeneu, J.; Gavara-Doñate, J.; Chorro, F.; Bodi, V.; Moratal, D. (2018). Texture analysis of cardiac cine magnetic resonance imaging to detect nonviable segments in patients with chronic myocardial infarction. Medical Physics. 45(4):1471-1480. https://doi.org/10.1002/mp.12783 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.1002/mp.12783 |
es_ES |
dc.description.upvformatpinicio |
1471 |
es_ES |
dc.description.upvformatpfin |
1480 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
45 |
es_ES |
dc.description.issue |
4 |
es_ES |
dc.identifier.pmid |
29389013 |
es_ES |
dc.relation.pasarela |
S\379091 |
es_ES |
dc.contributor.funder |
Generalitat Valenciana |
es_ES |
dc.contributor.funder |
European Regional Development Fund |
es_ES |
dc.contributor.funder |
Ministerio de Economía y Competitividad |
es_ES |
dc.contributor.funder |
Ministerio de Educación, Cultura y Deporte |
es_ES |
dc.description.references |
Castellano, G., Bonilha, L., Li, L. M., & Cendes, F. (2004). Texture analysis of medical images. Clinical Radiology, 59(12), 1061-1069. doi:10.1016/j.crad.2004.07.008 |
es_ES |
dc.description.references |
Hodgdon, T., McInnes, M. D. F., Schieda, N., Flood, T. A., Lamb, L., & Thornhill, R. E. (2015). Can Quantitative CT Texture Analysis be Used to Differentiate Fat-poor Renal Angiomyolipoma from Renal Cell Carcinoma on Unenhanced CT Images? Radiology, 276(3), 787-796. doi:10.1148/radiol.2015142215 |
es_ES |
dc.description.references |
Larroza, A., Moratal, D., Paredes-Sánchez, A., Soria-Olivas, E., Chust, M. L., Arribas, L. A., & Arana, E. (2015). Support vector machine classification of brain metastasis and radiation necrosis based on texture analysis in MRI. Journal of Magnetic Resonance Imaging, 42(5), 1362-1368. doi:10.1002/jmri.24913 |
es_ES |
dc.description.references |
Thevenot, J., Hirvasniemi, J., Pulkkinen, P., Määttä, M., Korpelainen, R., Saarakkala, S., & Jämsä, T. (2014). Assessment of Risk of Femoral Neck Fracture with Radiographic Texture Parameters: A Retrospective Study. Radiology, 272(1), 184-191. doi:10.1148/radiol.14131390 |
es_ES |
dc.description.references |
Kassner, A., & Thornhill, R. E. (2010). Texture Analysis: A Review of Neurologic MR Imaging Applications. American Journal of Neuroradiology, 31(5), 809-816. doi:10.3174/ajnr.a2061 |
es_ES |
dc.description.references |
Pfeiffer, M. P., & Biederman, R. W. W. (2015). Cardiac MRI. Medical Clinics of North America, 99(4), 849-861. doi:10.1016/j.mcna.2015.02.011 |
es_ES |
dc.description.references |
Flett, A. S., Hasleton, J., Cook, C., Hausenloy, D., Quarta, G., Ariti, C., … Moon, J. C. (2011). Evaluation of Techniques for the Quantification of Myocardial Scar of Differing Etiology Using Cardiac Magnetic Resonance. JACC: Cardiovascular Imaging, 4(2), 150-156. doi:10.1016/j.jcmg.2010.11.015 |
es_ES |
dc.description.references |
Engan K Eftestøl T Ørn S Kvaloy JT Woie L Exploratory data analysis of image texture and statistical features on myocardium and infarction areas in cardiac magnetic resonance images 2010 |
es_ES |
dc.description.references |
Kotu LP Engan K Eftestøl T Ørn S Woie L Segmentation of scarred and non-scarred myocardium in LG enhanced CMR images using intensity-based textural analysis 2011 |
es_ES |
dc.description.references |
Kotu, L., Engan, K., Skretting, K., Måløy, F., Ørn, S., Woie, L., & Eftestøl, T. (2013). Probability mapping of scarred myocardium using texture and intensity features in CMR images. BioMedical Engineering OnLine, 12(1), 91. doi:10.1186/1475-925x-12-91 |
es_ES |
dc.description.references |
Schofield, R., Ganeshan, B., Kozor, R., Nasis, A., Endozo, R., Groves, A., … Moon, J. C. (2016). CMR myocardial texture analysis tracks different etiologies of left ventricular hypertrophy. Journal of Cardiovascular Magnetic Resonance, 18(S1). doi:10.1186/1532-429x-18-s1-o82 |
es_ES |
dc.description.references |
Larroza, A., Materka, A., López-Lereu, M. P., Monmeneu, J. V., Bodí, V., & Moratal, D. (2017). Differentiation between acute and chronic myocardial infarction by means of texture analysis of late gadolinium enhancement and cine cardiac magnetic resonance imaging. European Journal of Radiology, 92, 78-83. doi:10.1016/j.ejrad.2017.04.024 |
es_ES |
dc.description.references |
Baessler, B., Mannil, M., Oebel, S., Maintz, D., Alkadhi, H., & Manka, R. (2018). Subacute and Chronic Left Ventricular Myocardial Scar: Accuracy of Texture Analysis on Nonenhanced Cine MR Images. Radiology, 286(1), 103-112. doi:10.1148/radiol.2017170213 |
es_ES |
dc.description.references |
Hervas, A., Ruiz-Sauri, A., de Dios, E., Forteza, M. J., Minana, G., Nunez, J., … Bodi, V. (2015). Inhomogeneity of collagen organization within the fibrotic scar after myocardial infarction: results in a swine model and in human samples. Journal of Anatomy, 228(1), 47-58. doi:10.1111/joa.12395 |
es_ES |
dc.description.references |
Heiberg, E., Sjögren, J., Ugander, M., Carlsson, M., Engblom, H., & Arheden, H. (2010). Design and validation of Segment - freely available software for cardiovascular image analysis. BMC Medical Imaging, 10(1). doi:10.1186/1471-2342-10-1 |
es_ES |
dc.description.references |
Bodí, V., Sanchis, J., López-Lereu, M. P., Losada, A., Núñez, J., Pellicer, M., … Llácer, À. (2005). Usefulness of a Comprehensive Cardiovascular Magnetic Resonance Imaging Assessment for Predicting Recovery of Left Ventricular Wall Motion in the Setting of Myocardial Stunning. Journal of the American College of Cardiology, 46(9), 1747-1752. doi:10.1016/j.jacc.2005.07.039 |
es_ES |
dc.description.references |
Rangayyan, R. M., Nguyen, T. M., Ayres, F. J., & Nandi, A. K. (2009). Effect of Pixel Resolution on Texture Features of Breast Masses in Mammograms. Journal of Digital Imaging, 23(5), 547-553. doi:10.1007/s10278-009-9238-0 |
es_ES |
dc.description.references |
Materka A Strzelecki M On the importance of MRI nonuniformity correction for texture analysis 2013 |
es_ES |
dc.description.references |
Collewet, G., Strzelecki, M., & Mariette, F. (2004). Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magnetic Resonance Imaging, 22(1), 81-91. doi:10.1016/j.mri.2003.09.001 |
es_ES |
dc.description.references |
Vallières M MATLAB programming tools for radiomics analysis https://github.com/mvallieres/radiomics |
es_ES |
dc.description.references |
Zhao G Pietikainen M Center for machine vision and signal analysis http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab |
es_ES |
dc.description.references |
Zwanenburg A Leger S Vallières M Löck S Image biomarker standardisation initiative 2017 http://arxiv.org/abs/1612.07003 |
es_ES |
dc.description.references |
Vallières, M., Freeman, C. R., Skamene, S. R., & El Naqa, I. (2015). A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Physics in Medicine and Biology, 60(14), 5471-5496. doi:10.1088/0031-9155/60/14/5471 |
es_ES |
dc.description.references |
Zhao, G., & Pietikainen, M. (2007). Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6), 915-928. doi:10.1109/tpami.2007.1110 |
es_ES |
dc.description.references |
Ojala T Pietikäinen M Mäenpää T A generalized local binary pattern operator for multiresolution gray scale and rotation invariant texture classification |
es_ES |
dc.description.references |
Duan, K.-B., Rajapakse, J. C., Wang, H., & Azuaje, F. (2005). Multiple SVM-RFE for Gene Selection in Cancer Classification With Expression Data. IEEE Transactions on Nanobioscience, 4(3), 228-234. doi:10.1109/tnb.2005.853657 |
es_ES |
dc.description.references |
Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Machine Learning, 46(1/3), 389-422. doi:10.1023/a:1012487302797 |
es_ES |
dc.description.references |
Wang, S., & Summers, R. M. (2012). Machine learning and radiology. Medical Image Analysis, 16(5), 933-951. doi:10.1016/j.media.2012.02.005 |
es_ES |
dc.description.references |
Kuhn, M. (2008). Building Predictive Models inRUsing thecaretPackage. Journal of Statistical Software, 28(5). doi:10.18637/jss.v028.i05 |
es_ES |
dc.description.references |
Colby J (multiple) Support Vector Machine Recursive Feature Elimination - mSVM-RFE http://www.colbyimaging.com/wiki/statistics/msvm-rfe |
es_ES |
dc.description.references |
Salzberg, S. L. (1997). Data Mining and Knowledge Discovery, 1(3), 317-328. doi:10.1023/a:1009752403260 |
es_ES |
dc.description.references |
Bodí, V., Husser, O., Sanchis, J., Núñez, J., López-Lereu, M. P., Monmeneu, J. V., … Llácer, A. (2010). Contractile Reserve and Extent of Transmural Necrosis in the Setting of Myocardial Stunning: Comparison at Cardiac MR Imaging. Radiology, 255(3), 755-763. doi:10.1148/radiol.10091191 |
es_ES |
dc.description.references |
Bodi, V., Monmeneu, J. V., Ortiz-Perez, J. T., Lopez-Lereu, M. P., Bonanad, C., Husser, O., … Chorro, F. J. (2016). Prediction of Reverse Remodeling at Cardiac MR Imaging Soon after First ST-Segment–Elevation Myocardial Infarction: Results of a Large Prospective Registry. Radiology, 278(1), 54-63. doi:10.1148/radiol.2015142674 |
es_ES |
dc.description.references |
Shriki, J. E., Surti, K. S., Farvid, A. F., Lee, C. C., Samadi, S., Hirschbeinv, J., & Colletti, P. M. (2011). Chemical Shift Artifact on Steady-State Free Precession Cardiac Magnetic Resonance Sequences as a Result of Lipomatous Metaplasia: A Novel Finding in Chronic Myocardial Infarctions. Canadian Journal of Cardiology, 27(5), 664.e17-664.e23. doi:10.1016/j.cjca.2010.12.074 |
es_ES |
dc.description.references |
Goldfarb, J. W., McLaughlin, J., Gray, C. A., & Han, J. (2011). Cyclic CINE-balanced steady-state free precession image intensity variations: Implications for the detection of myocardial edema. Journal of Magnetic Resonance Imaging, 33(3), 573-581. doi:10.1002/jmri.22368 |
es_ES |
dc.description.references |
Gillies, R. J., Kinahan, P. E., & Hricak, H. (2016). Radiomics: Images Are More than Pictures, They Are Data. Radiology, 278(2), 563-577. doi:10.1148/radiol.2015151169 |
es_ES |