- -

Thermal impact of balloon occlusion of the coronary sinus during mitral isthmus radiofrequency ablation: an in-silico study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Thermal impact of balloon occlusion of the coronary sinus during mitral isthmus radiofrequency ablation: an in-silico study

Mostrar el registro completo del ítem

González-Suárez, A.; D'avila, A.; Pérez, JJ.; Reddy, VY.; Cámara, Ó.; Berjano, E. (2019). Thermal impact of balloon occlusion of the coronary sinus during mitral isthmus radiofrequency ablation: an in-silico study. International Journal of Hyperthermia. 36(1):1168-1177. https://doi.org/10.1080/02656736.2019.1686181

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/147743

Ficheros en el ítem

Metadatos del ítem

Título: Thermal impact of balloon occlusion of the coronary sinus during mitral isthmus radiofrequency ablation: an in-silico study
Autor: González-Suárez, Ana d'Avila, Andre Pérez, Juan J Reddy, Vivek Y. Cámara, Óscar Berjano, Enrique
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Palabras clave: Balloon occlusion , Computer model , Coronary sinus , Mitral isthmus , RF ablation
Derechos de uso: Reconocimiento (by)
Fuente:
International Journal of Hyperthermia. (issn: 0265-6736 )
DOI: 10.1080/02656736.2019.1686181
Editorial:
Taylor & Francis
Versión del editor: https://doi.org/10.1080/02656736.2019.1686181
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//FJCI-2015-27202/ES/FJCI-2015-27202/
info:eu-repo/grantAgreement/MECD//CAS18%2F00291/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094357-B-C21/ES/MODELADO Y EXPERIMENTACION PARA TERAPIAS ABLATIVAS INNOVADORAS/
info:eu-repo/grantAgreement/MINECO//CAS18/00390/
Agradecimientos:
This work was supported by the Spanish Ministerio de Economia, Industria y Competitividad under "Plan Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad", Grant No "RTI2018-094357-B-C21". ...[+]
Tipo: Artículo

References

Cabrera, J. A., Pizarro, G., & Sanchez-Quintana, D. (2012). Muscular architecture of the mitral isthmus: anatomical determinants for catheter ablation. Europace, 14(8), 1069-1071. doi:10.1093/europace/eus176

Fuller, I. A., & Wood, M. A. (2003). Intramural Coronary Vasculature Prevents Transmural Radiofrequency Lesion Formation. Circulation, 107(13), 1797-1803. doi:10.1161/01.cir.0000058705.97823.f4

D’AVILA, A., THIAGALINGAM, A., FOLEY, L., FOX, M., RUSKIN, J. N., & REDDY, V. Y. (2008). Temporary Occlusion of the Great Cardiac Vein and Coronary Sinus to Facilitate Radiofrequency Catheter Ablation of the Mitral Isthmus. Journal of Cardiovascular Electrophysiology, 19(6), 645-650. doi:10.1111/j.1540-8167.2008.01185.x [+]
Cabrera, J. A., Pizarro, G., & Sanchez-Quintana, D. (2012). Muscular architecture of the mitral isthmus: anatomical determinants for catheter ablation. Europace, 14(8), 1069-1071. doi:10.1093/europace/eus176

Fuller, I. A., & Wood, M. A. (2003). Intramural Coronary Vasculature Prevents Transmural Radiofrequency Lesion Formation. Circulation, 107(13), 1797-1803. doi:10.1161/01.cir.0000058705.97823.f4

D’AVILA, A., THIAGALINGAM, A., FOLEY, L., FOX, M., RUSKIN, J. N., & REDDY, V. Y. (2008). Temporary Occlusion of the Great Cardiac Vein and Coronary Sinus to Facilitate Radiofrequency Catheter Ablation of the Mitral Isthmus. Journal of Cardiovascular Electrophysiology, 19(6), 645-650. doi:10.1111/j.1540-8167.2008.01185.x

Sánchez-Quintana, D., López-Mínguez, J. R., Macías, Y., Cabrera, J. A., & Saremi, F. (2014). Left Atrial Anatomy Relevant to Catheter Ablation. Cardiology Research and Practice, 2014, 1-17. doi:10.1155/2014/289720

González-Suárez, A., Berjano, E., Guerra, J. M., & Gerardo-Giorda, L. (2016). Computational Modeling of Open-Irrigated Electrodes for Radiofrequency Cardiac Ablation Including Blood Motion-Saline Flow Interaction. PLOS ONE, 11(3), e0150356. doi:10.1371/journal.pone.0150356

González-Suárez, A., Pérez, J. J., & Berjano, E. (2018). Should fluid dynamics be included in computer models of RF cardiac ablation by irrigated-tip electrodes? BioMedical Engineering OnLine, 17(1). doi:10.1186/s12938-018-0475-7

Bin Choy, Y., Cao, H., Tungjitkusolmun, S., Tsai, J.-Z., Haemmerich, D., Vorperian, V. R., & Webster, J. G. (2002). Mechanical compliance of the endocardium. Journal of Biomechanics, 35(12), 1671-1676. doi:10.1016/s0021-9290(02)00228-2

Yokokawa, M., Sundaram, B., Garg, A., Stojanovska, J., Oral, H., Morady, F., & Chugh, A. (2011). Impact of mitral isthmus anatomy on the likelihood of achieving linear block in patients undergoing catheter ablation of persistent atrial fibrillation. Heart Rhythm, 8(9), 1404-1410. doi:10.1016/j.hrthm.2011.04.030

Watzinger, N., Lund, G. K., Saeed, M., Reddy, G. P., Araoz, P. A., Yang, M., … Higgins, C. B. (2005). Myocardial blood flow in patients with dilated cardiomyopathy: Quantitative assessment with velocity-encoded cine magnetic resonance imaging of the coronary sinus. Journal of Magnetic Resonance Imaging, 21(4), 347-353. doi:10.1002/jmri.20274

Haines, D. E. (2011). Letter by Haines Regarding Article, «Direct Measurement of the Lethal Isotherm for Radiofrequency Ablation of Myocardial Tissue». Circulation: Arrhythmia and Electrophysiology, 4(5). doi:10.1161/circep.111.965459

Nath, S., Lynch, C., Whayne, J. G., & Haines, D. E. (1993). Cellular electrophysiological effects of hyperthermia on isolated guinea pig papillary muscle. Implications for catheter ablation. Circulation, 88(4), 1826-1831. doi:10.1161/01.cir.88.4.1826

Gonzalez-Suarez, A., & Berjano, E. (2016). Comparative Analysis of Different Methods of Modeling the Thermal Effect of Circulating Blood Flow During RF Cardiac Ablation. IEEE Transactions on Biomedical Engineering, 63(2), 250-259. doi:10.1109/tbme.2015.2451178

Jain, M. K., & Wolf, P. D. (2000). A Three-Dimensional Finite Element Model of Radiofrequency Ablation with Blood Flow and its Experimental Validation. Annals of Biomedical Engineering, 28(9), 1075-1084. doi:10.1114/1.1310219

Abraham, J. P., & Sparrow, E. M. (2007). A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure- and necrosis-dependent perfusion, and moisture-dependent properties. International Journal of Heat and Mass Transfer, 50(13-14), 2537-2544. doi:10.1016/j.ijheatmasstransfer.2006.11.045

Pérez, J. J., González-Suárez, A., & Berjano, E. (2017). Numerical analysis of thermal impact of intramyocardial capillary blood flow during radiofrequency cardiac ablation. International Journal of Hyperthermia, 34(3), 243-249. doi:10.1080/02656736.2017.1336258

Labonte, S. (1994). Numerical model for radio-frequency ablation of the endocardium and its experimental validation. IEEE Transactions on Biomedical Engineering, 41(2), 108-115. doi:10.1109/10.284921

Schutt, D., Berjano, E. J., & Haemmerich, D. (2009). Effect of electrode thermal conductivity in cardiac radiofrequency catheter ablation: A computational modeling study. International Journal of Hyperthermia, 25(2), 99-107. doi:10.1080/02656730802563051

Doss, J. D. (1982). Calculation of electric fields in conductive media. Medical Physics, 9(4), 566-573. doi:10.1118/1.595107

Hasgall PA, Di Gennaro F, Baumgartner C, et al. IT’IS Database for thermal and electromagnetic parameters of biological tissues, Version 3.0. [2015 Sep 01], Available from: www.itis.ethz.ch/database.

Haemmerich, D., Chachati, L., Wright, A. S., Mahvi, D. M., Lee, F. T., & Webster, J. G. (2003). Hepatic radiofrequency ablation with internally cooled probes: effect of coolant temperature on lesion size. IEEE Transactions on Biomedical Engineering, 50(4), 493-500. doi:10.1109/tbme.2003.809488

Berjano, E. J. (2006). Theoretical modeling for radiofrequency ablation: state-of-the-art and challenges for the future. BioMedical Engineering OnLine, 5(1). doi:10.1186/1475-925x-5-24

Tungjitkusolmun, S., Woo, E. J., Cao, H., Tsai, J. Z., Vorperian, V. R., & Webster, J. G. (2000). Thermal—electrical finite element modelling for radio frequency cardiac ablation: Effects of changes in myocardial properties. Medical & Biological Engineering & Computing, 38(5), 562-568. doi:10.1007/bf02345754

Shahidi, A. V., & Savard, P. (1994). A finite element model for radiofrequency ablation of the myocardium. IEEE Transactions on Biomedical Engineering, 41(10), 963-968. doi:10.1109/10.324528

Anjaneyulu, A., Raghu, K., Chandramukhi, S., Satyajit, G. M., Arramraja, S., Raghavaraju, P., … Somaraju, B. (2008). Evaluation of Left Main Coronary Artery Stenosis by Transthoracic Echocardiography. Journal of the American Society of Echocardiography, 21(7), 855-860. doi:10.1016/j.echo.2007.12.016

Liu, Y., Shehata, M., & Wang, X. (2017). Alternative Approach for Ablation of the Mitral Isthmus. Circulation: Arrhythmia and Electrophysiology, 10(10). doi:10.1161/circep.117.005814

TAKAHASHI, Y., JAIS, P., HOCINI, M., SANDERS, P., ROTTER, M., ROSTOCK, T., … HAISSAGUERRE, M. (2005). Acute Occlusion of the Left Circumflex Coronary Artery During Mitral Isthmus Linear Ablation. Journal of Cardiovascular Electrophysiology, 16(10), 1104-1107. doi:10.1111/j.1540-8167.2005.50124.x

Pappone, C., Oral, H., Santinelli, V., Vicedomini, G., Lang, C. C., Manguso, F., … Morady, F. (2004). Atrio-Esophageal Fistula as a Complication of Percutaneous Transcatheter Ablation of Atrial Fibrillation. Circulation, 109(22), 2724-2726. doi:10.1161/01.cir.0000131866.44650.46

Lee, J. H., Nam, G.-B., Go, T.-H., Hwang, J., Kim, M., Hwang, Y. M., … Kim, Y.-H. (2018). Alternative strategies to improve success rate of mitral isthmus block. Medicine, 97(48), e13060. doi:10.1097/md.0000000000013060

Badertscher, P., & Wissner, E. (2019). Case report: Cryoballoon ablation of the mitral isthmus using a novel mapping system. Pacing and Clinical Electrophysiology, 42(10), 1414-1417. doi:10.1111/pace.13745

Kawaguchi, N., Okishige, K., Yamauchi, Y., Kurabayashi, M., Nakamura, T., Keida, T., … Valderrábano, M. (2019). Clinical impact of ethanol infusion into the vein of Marshall on the mitral isthmus area evaluated by atrial electrograms recorded inside the coronary sinus. Heart Rhythm, 16(7), 1030-1038. doi:10.1016/j.hrthm.2019.01.031

Wong, K. C. K., Jones, M., Qureshi, N., Sadarmin, P. P., De Bono, J., Rajappan, K., … Betts, T. R. (2011). Balloon occlusion of the distal coronary sinus facilitates mitral isthmus ablation. Heart Rhythm, 8(6), 833-839. doi:10.1016/j.hrthm.2011.01.042

HOCINI, M., SHAH, A. J., NAULT, I., RIVARD, L., LINTON, N., NARAYAN, S., … HAÏSSAGUERRE, M. (2012). Mitral Isthmus Ablation with and Without Temporary Spot Occlusion of the Coronary Sinus: A Randomized Clinical Comparison of Acute Outcomes. Journal of Cardiovascular Electrophysiology, 23(5), 489-496. doi:10.1111/j.1540-8167.2011.02248.x

Chauvin, M., Shah, D. C., Haïssaguerre, M., Marcellin, L., & Brechenmacher, C. (2000). The Anatomic Basis of Connections Between the Coronary Sinus Musculature and the Left Atrium in Humans. Circulation, 101(6), 647-652. doi:10.1161/01.cir.101.6.647

Panescu, D., Whayne, J. G., Fleischman, S. D., Mirotznik, M. S., Swanson, D. K., & Webster, J. G. (1995). Three-dimensional finite element analysis of current density and temperature distributions during radio-frequency ablation. IEEE Transactions on Biomedical Engineering, 42(9), 879-890. doi:10.1109/10.412649

WRIGHT, M., HARKS, E., DELADI, S., FOKKENROOD, S., ZUO, F., VAN DUSSCHOTEN, A., … JAÏS, P. (2013). Visualizing Intramyocardial Steam Formation with a Radiofrequency Ablation Catheter Incorporating Near-Field Ultrasound. Journal of Cardiovascular Electrophysiology, 24(12), 1403-1409. doi:10.1111/jce.12218

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem